login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175879
Numbers arising from certain regular binary expansions.
1
0, 1, 2, 7, 12, 29, 58, 123, 240, 501, 998, 2023, 4040, 8137, 16266, 32671, 65300, 130837, 261682, 523827, 1047592, 2096237, 4192366, 8386671, 16773312, 33550545, 67100882, 134210007, 268419484, 536854941, 1073709994, 2147451819
OFFSET
0,3
COMMENTS
Consider infinite 0-1 matrix (which expands left and down).
Last column is 010101 ... (alters every step)
Previous is 00110011 ... (alters every 2 steps)
Previous to previous is 000111000111 ... (alters every 3 steps)
Etc. ...
Now a(n) are values of binary numbers coded by rows.
FORMULA
a(0) = 0;
a(n) = \sum_{k=1}^n 2^{k-1}\odd(n \div k)
MAPLE
Contribution from R. J. Mathar, Oct 08 2010: (Start)
A175879 := proc(n) local a, k, ndivk ; a := 0 ; for k from 1 to n do ndivk := floor(n/k) ; if type(ndivk, 'odd') then a := a+2^(k-1) ; fi ; end do: a ; end proc:
seq(A175879(n), n=0..40) ; (End)
MATHEMATICA
f[n_] := Sum[ If[ OddQ[ Floor[ n/k]], 2^(k - 1), 0], {k, n}]; Array[f, 32, 0]
PROG
(Pascal pseudocode)
var n, a, p, k : integer;
readln(n); (* read index *)
p:= 1; (* powers of 2 *)
a:= 0;
for k:= 1 to n do
begin
if odd( n div k ) then a:= a+p;
p:= 2*p
end;
writeln(a); (* here a = a(n) *)
(* Kamburelis Anastasios (akamb(AT)epp.teicrete.gr), Oct 09 2010 *)
CROSSREFS
Sequence in context: A177747 A288888 A293621 * A102371 A007230 A290234
KEYWORD
easy,nonn
AUTHOR
Kamburelis Anastasios (akamb(AT)epp.teicrete.gr), Oct 07 2010
EXTENSIONS
Extended by R. J. Mathar, Oct 08 2010
STATUS
approved