Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Dec 19 2024 12:17:10
%S 1,2,7,12,27,42,77,112,182,252,378,504,714,924,1254,1584,2079,2574,
%T 3289,4004,5005,6006,7371,8736,10556,12376,14756,17136,20196,23256,
%U 27132,31008,35853,40698,46683,52668,59983,67298,76153,85008,95634,106260,118910,131560,146510
%N Convolution of A008805 (triangular numbers repeated) with itself.
%H Bruno Berselli, <a href="/A177747/b177747.txt">Table of n, a(n) for n = 0..1000</a>
%H Brian Hopkins and Aram Tangboonduangjit, <a href="https://arxiv.org/abs/2412.11528">Water Cells in Compositions of 1s and 2s</a>, arXiv:2412.11528 [math.CO], 2024. See p. 3.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-8,-2,12,-2,-8,3,2,-1).
%F Square (1 + x + 3x^2 + 3x^3 + 6x^4 + 6x^5 + ...)
%F G.f.: 1/((x+1)^4*(x-1)^6). [_Bruno Berselli_, Mar 23 2012]
%F a(n) = (n+5)*(2*n*(n+10)*(n^2+10*n+35)+5*(2*n*(n+10)+39)*(-1)^n+573)/3840. [_Bruno Berselli_, Mar 23 2012]
%e As a multiplication table array:
%e .
%e 1, 1, 3, 3, 6,...
%e 1, 1, 3, 3,......
%e 3, 3, 9,.........
%e 3, 3,............
%e 6,...............
%e .
%e Then taking antidiagonal sums of terms, we obtain 1, (1 + 1) = 2, (3 + 1 + 3) = 7, (3 + 3 + 3 + 3) = 12, (6, + 3 + 9 + 3 + 6) = 27, etc.
%t lst = CoefficientList[ Series[1/((1 - x) (1 - x^2)^2), {x, 0, 111}], x]; t[n_, k_] := lst[[n]] lst[[k]]; f[n_] := Sum[ t[n - m + 1, m], {m, n}]; Array[f, 45] (* _Robert G. Wilson v_, Dec 18 2010 *)
%t LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 2, 7, 12, 27, 42, 77, 112, 182, 252}, 45] (* _Bruno Berselli_, Mar 23 2012 *)
%o (Magma) A008805:=func<i|(2*i^2+10*i+11+(2*i+5)*(-1)^i)/16>; [&+[A008805(i)*A008805(n-i): i in [0..n]]: n in [0..44]]; // _Bruno Berselli_, Mar 23 2012
%Y Cf. A008805.
%K nonn,easy
%O 0,2
%A _Gary W. Adamson_, Dec 17 2010
%E More terms from _Robert G. Wilson v_, Dec 18 2010
%E Definition rewritten by _Bruno Berselli_, Mar 23 2012