OFFSET
1,2
COMMENTS
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1).
FORMULA
From Chai Wah Wu, Nov 30 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 13.
G.f.: -x^2*(3*x^9 + 21*x^8 + 28*x^7 + 100*x^6 + 136*x^5 + 96*x^4 + 109*x^3 + 59*x^2 + 20*x + 4)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3), s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^2*s^2 + 2*r^2*s*t + r^2*t^2 + 2*r*s^3 + 6*r*s^2*t + 6*r*s*t^2 + 2*r*t^3 + 2*s^3*t + 2*s*t^3.
If n == 0 mod 3, then a(n) = 8*n^4/27.
If n == 1 mod 3, then a(n) = (8*n^4 + 4*n^3 - 3*n^2 - 2*n - 7)/27.
If n == 2 mod 3, then a(n) = (8*n^4 + 8*n^3 - 12*n^2 - 16*n - 4)/27. (End)
MATHEMATICA
a = 1; b = n; z1 = 45;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A210698 *)
Table[v[n], {n, 1, z1}] (* A211071 *)
Table[w[n], {n, 1, z1}] (* A211071 *)
LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 4, 24, 83, 208, 384, 756, 1332, 1944, 3099, 4672, 6144, 8768}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
PROG
(Python)
from __future__ import division
def A211071(n):
if n % 3 == 0:
return 8*n**4//27
elif n % 3 == 1:
return (8*n**4 + 4*n**3 - 3*n**2 - 2*n - 7)//27
else:
return (8*n**4 + 8*n**3 - 12*n**2 - 16*n - 4)//27 # Chai Wah Wu, Nov 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 01 2012
STATUS
approved