login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211034
Number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 1 (mod 3).
4
0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744, 10955, 15000, 18100, 23988, 31104, 36432, 46179, 57624, 66052, 81056, 98304, 110848, 132723, 157464, 175284, 205860, 240000, 264400, 305723, 351384, 383812, 438144, 497664, 539712, 609531
OFFSET
0,2
COMMENTS
Also, the number of 2 X 2 matrices having all elements in {0,1,...,n} and determinant = 2 (mod 3). A211033(n) + 2*A211034(n)=n^4 for n>0. For a guide to related sequences, see A210000.
LINKS
FORMULA
From Chai Wah Wu, Nov 28 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 12.
G.f.: -x*(4*x^9 + 20*x^8 + 59*x^7 + 109*x^6 + 96*x^5 + 136*x^4 + 100*x^3 + 28*x^2 + 21*x + 3)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3)+1, s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^2*s^2 + 2*r^2*s*t + r^2*t^2 + 2*r*s^3 + 6*r*s^2*t + 6*r*s*t^2 + 2*r*t^3 + 2*s^3*t + 2*s*t^3.
If n == 0 mod 3, then a(n) = 4*n^2*(2*n^2 + 6*n + 3)/27.
If n == 1 mod 3, then a(n) = (8*n^4 + 28*n^3 + 33*n^2 + 16*n - 4)/27.
If n == 2 mod 3, then a(n) = 8*(n + 1)^4/27. (End)
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 0, z1}] (* A211033 *)
Table[v[n], {n, 0, z1}] (* A211034 *)
Table[w[n], {n, 0, z1}] (* A211034 *)
LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 3, 24, 52, 164, 384, 592, 1131, 1944, 2628, 4128, 6144, 7744}, 60] (* Vincenzo Librandi, Nov 29 2016 *)
PROG
(Python)
from __future__ import division
def A211034(n):
x, y, z = n//3 + 1, (n-1)//3 + 1, (n-2)//3 + 1
return x**2*y**2 + 2*x**2*y*z + x**2*z**2 + 2*x*y**3 + 6*x*y**2*z + 6*x*y*z**2 + 2*x*z**3 + 2*y**3*z + 2*y*z**3 # Chai Wah Wu, Nov 28 2016
CROSSREFS
Sequence in context: A363536 A293594 A160665 * A220868 A296273 A101008
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2012
STATUS
approved