login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210000 Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}. 100
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of 2 X 2 matrices having all terms in {0,1,...,n} and inverses with all terms integers.

Most sequences in the following guide count 2 X 2 matrices having all terms contained in the domain shown in column 2 and determinant d or permanent p or sum s of terms as indicated in column 3.

A059306 ... {0,1,...,n} ..... d=0

A171503 ... {0,1,...,n} ..... d=1

A210000 ... {0,1,...,n} .... |d|=1

A209973 ... {0,1,...,n} ..... d=2

A209975 ... {0,1,...,n} ..... d=3

A209976 ... {0,1,...,n} ..... d=4

A209977 ... {0,1,...,n} ..... d=5

A210282 ... {0,1,...,n} ..... d=n

A210283 ... {0,1,...,n} ..... d=n-1

A210284 ... {0,1,...,n} ..... d=n+1

A210285 ... {0,1,...,n} ..... d=floor(n/2)

A210286 ... {0,1,...,n} ..... d=trace

A280588 ... {0,1,...,n} ..... d=s

A106634 ... {0,1,...,n} ..... p=n

A210288 ... {0,1,...,n} ..... p=trace

A210289 ... {0,1,...,n} ..... p=(trace)^2

A280934 ... {0,1,...,n} ..... p=s

A210290 ... {0,1,...,n} ..... d>=0

A183761 ... {0,1,...,n} ..... d>0

A210291 ... {0,1,...,n} ..... d>n

A210366 ... {0,1,...,n} ..... d>=n

A210367 ... {0,1,...,n} ..... d>=2n

A210368 ... {0,1,...,n} ..... d>=3n

A210369 ... {0,1,...,n} ..... d is even

A210370 ... {0,1,...,n} ..... d is odd

A210371 ... {0,1,...,n} ..... d is even and >=0

A210372 ... {0,1,...,n} ..... d is even and >0

A210373 ... {0,1,...,n} ..... d is odd and >0

A210374 ... {0,1,...,n} ..... s=n+2

A210375 ... {0,1,...,n} ..... s=n+3

A210376 ... {0,1,...,n} ..... s=n+4

A210377 ... {0,1,...,n} ..... s=n+5

A210378 ... {0,1,...,n} ..... t is even

A210379 ... {0,1,...,n} ..... t is odd

A211031 ... {0,1,...,n} ..... d is in [-n,n]

A211032 ... {0,1,...,n} ..... d is in (-n,n)

A211033 ... {0,1,...,n} ..... d=0 (mod 3)

A211034 ... {0,1,...,n} ..... d=1 (mod 3)

A209974 = (A209973)/4

A134506 ... {1,2,...,n} ..... d=0

A196227 ... {1,2,...,n} ..... d=1

A209979 ... {1,2,...,n} .... |d|=1

A197168 ... {1,2,...,n} ..... d=2

A210001 ... {1,2,...,n} ..... d=3

A210002 ... {1,2,...,n} ..... d=4

A210027 ... {1,2,...,n} ..... d=5

A209978 = (A196227)/2

A209980 = (A197168)/2

A211053 ... {1,2,...,n} ..... d=n

A211054 ... {1,2,...,n} ..... d=n-1

A211055 ... {1,2,...,n} ..... d=n+1

A055507 ... {1,2,...,n} ..... p=n

A211057 ... {1,2,...,n} ..... d is in [0,n]

A211058 ... {1,2,...,n} ..... d>=0

A211059 ... {1,2,...,n} ..... d>0

A211060 ... {1,2,...,n} ..... d>n

A211061 ... {1,2,...,n} ..... d>=n

A211062 ... {1,2,...,n} ..... d>=2n

A211063 ... {1,2,...,n} ..... d>=3n

A211064 ... {1,2,...,n} ..... d is even

A211065 ... {1,2,...,n} ..... d is odd

A211066 ... {1,2,...,n} ..... d is even and >=0

A211067 ... {1,2,...,n} ..... d is even and >0

A211068 ... {1,2,...,n} ..... d is odd and >0

A209981 ... {-n,....,n} ..... d=0

A209982 ... {-n,....,n} ..... d=1

A209984 ... {-n,....,n} ..... d=2

A209986 ... {-n,....,n} ..... d=3

A209988 ... {-n,....,n} ..... d=4

A209990 ... {-n,....,n} ..... d=5

A211140 ... {-n,....,n} ..... d=n

A211141 ... {-n,....,n} ..... d=n-1

A211142 ... {-n,....,n} ..... d=n+1

A211143 ... {-n,....,n} ..... d=n^2

A211140 ... {-n,....,n} ..... p=n

A211145 ... {-n,....,n} ..... p=trace

A211146 ... {-n,....,n} ..... d in [0,n]

A211147 ... {-n,....,n} ..... d>=0

A211148 ... {-n,....,n} ..... d>0

A211149 ... {-n,....,n} ..... d<0 or d>0

A211150 ... {-n,....,n} ..... d>n

A211151 ... {-n,....,n} ..... d>=n

A211152 ... {-n,....,n} ..... d>=2n

A211153 ... {-n,....,n} ..... d>=3n

A211154 ... {-n,....,n} ..... d is even

A211155 ... {-n,....,n} ..... d is odd

A211156 ... {-n,....,n} ..... d is even and >=0

A211157 ... {-n,....,n} ..... d is even and >0

A211158 ... {-n,....,n} ..... d is odd and >0

LINKS

Table of n, a(n) for n=0..44.

FORMULA

a(n) = 2*A171503(n).

EXAMPLE

a(2)=6 counts these matrices (using reduced matrix notation):

(1,0,0,1), determinant = 1, inverse = (1,0,0,1)

(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)

(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)

(0,1,1,0), determinant = -1, inverse = (0,1,1,0)

(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)

(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)

MATHEMATICA

a = 0; b = n; z1 = 50;

t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]

c[n_, k_] := c[n, k] = Count[t[n], k]

Table[c[n, 0], {n, 0, z1}]  (* A059306 *)

Table[c[n, 1], {n, 0, z1}]  (* A171503 *)

2 %                         (* A210000 *)

Table[c[n, 2], {n, 0, z1}]  (* A209973 *)

%/4                         (* A209974 *)

Table[c[n, 3], {n, 0, z1}]  (* A209975 *)

Table[c[n, 4], {n, 0, z1}]  (* A209976 *)

Table[c[n, 5], {n, 0, z1}]  (* A209977 *)

CROSSREFS

Cf. A171503.

See also the very useful list of cross-references in the Comments section.

Sequence in context: A192035 A183023 A143702 * A134067 A024932 A273365

Adjacent sequences:  A209997 A209998 A209999 * A210001 A210002 A210003

KEYWORD

nonn

AUTHOR

Clark Kimberling, Mar 16 2012

EXTENSIONS

A209982 added to list in comment by Chai Wah Wu, Nov 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 23 04:38 EDT 2017. Contains 283903 sequences.