login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280588
Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = determinant.
5
1, 1, 2, 9, 18, 41, 58, 97, 130, 185, 226, 313, 354, 457, 538, 649, 738, 889, 954, 1145, 1266, 1449, 1578, 1809, 1930, 2177, 2362, 2609, 2770, 3129, 3242, 3609, 3810, 4097, 4402, 4793, 5026, 5433, 5674, 6097, 6346, 6929, 7090, 7641, 8010, 8433, 8810, 9369, 9626, 10297, 10690
OFFSET
0,3
LINKS
Indranil Ghosh and Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms for n = 0..200 from Indranil Ghosh)
EXAMPLE
For n = 4, the possible matrices are [0,0,0,0], [2,0,0,2], [2,0,1,3],[2,0,2,4], [2,1,0,3], [2,2,0,4], [3,0,1,2], [3,0,3,3], [3,1,0,2], [3,1,1,3], [3,1,2,4], [3,2,1,4], [3,3,0,3], [4,0,2,2], [4,1,2,3],
[4,2,0,2], [4,2,1,3] and [4,2,2,4]. There are 18 possibilities.
Here each of the matrices are defined as M = [a,b,c,d], where a = M[1][1], b = M[1][2], c = M[2][1] and d = M[2][2].
So, for n = 4, a(n) = 18.
PROG
(Python)
def t(n):
s=0
for a in range(n+1):
for b in range(n+1):
for c in range(n+1):
for d in range(n+1):
if (a+b+c+d)==(a*d-b*c):
s+=1
return s
for i in range(51):
print(str(i)+" "+str(t(i)))
CROSSREFS
Cf. A210374 (Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n+2).
Sequence in context: A296843 A200085 A083708 * A191520 A037421 A083423
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 10 2017
STATUS
approved