login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191520
Number of UUU's in all the dispersed Dyck paths of semilength n (i.e., in all Motzkin paths of length n; U=(1,1)).
2
0, 0, 0, 0, 0, 0, 1, 2, 9, 18, 57, 114, 312, 624, 1578, 3156, 7599, 15198, 35401, 70802, 161052, 322104, 719790, 1439580, 3173090, 6346180, 13836426, 27672852, 59803104, 119606208, 256596276, 513192552, 1094249019, 2188498038, 4642178601, 9284357202
OFFSET
0,8
LINKS
FORMULA
a(n) = Sum_{k=0..floor((n-3)/2)} k*A191518(n,k) for n>=4 (clarified by G. C. Greubel).
G.f.: (1-3*z^2-(1-z^2)*sqrt(1-4*z^2))/(2*(1-2*z)*sqrt(1-4*z^2)).
a(n) ~ 2^(n-5/2)*sqrt(n)/sqrt(Pi) * (1 - 3*sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence n*(n-6)*a(n) -2*n*(n-6)*a(n-1) -4*(n-3)*(n-4)*a(n-2) +8*(n-3)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 24 2022
EXAMPLE
a(7)=2 because among the 35 (=A001405(7)) dispersed Dyck paths of length 7 only UUUDDDH and HUUUDDD have UUU's.
MAPLE
g := ((1-3*z^2-(1-z^2)*sqrt(1-4*z^2))*1/2)/((1-2*z)*sqrt(1-4*z^2)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
MATHEMATICA
CoefficientList[Series[((1-3*x^2-(1-x^2)*Sqrt[1-4*x^2])*1/2)/((1-2*x)* Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0, 0, 0], Vec((1-3*x^2-(1-x^2)*sqrt(1-4*x^2))/(2*(1-2*x)*sqrt(1-4*x^2)))) \\ G. C. Greubel, Mar 26 2017
CROSSREFS
Sequence in context: A200085 A083708 A280588 * A037421 A083423 A068978
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 07 2011
STATUS
approved