The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191520 Number of UUU's in all the dispersed Dyck paths of semilength n (i.e., in all Motzkin paths of length n (U=(1,1)). 2
 0, 0, 0, 0, 0, 0, 1, 2, 9, 18, 57, 114, 312, 624, 1578, 3156, 7599, 15198, 35401, 70802, 161052, 322104, 719790, 1439580, 3173090, 6346180, 13836426, 27672852, 59803104, 119606208, 256596276, 513192552, 1094249019, 2188498038, 4642178601, 9284357202 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{k=0..floor((n-3)/2)} k*A191518(n,k) for n>=4 (clarified by G. C. Greubel). G.f.: (1-3*z^2-(1-z^2)*sqrt(1-4*z^2))/(2*(1-2*z)*sqrt(1-4*z^2)). a(n) ~ 2^(n-5/2)*sqrt(n)/sqrt(Pi) * (1 - 3*sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 21 2014 EXAMPLE a(7)=2 because among the 35 (=A001405(7)) dispersed Dyck paths of length 7 only UUUDDDH and HUUUDDD have UUU's. MAPLE g := ((1-3*z^2-(1-z^2)*sqrt(1-4*z^2))*1/2)/((1-2*z)*sqrt(1-4*z^2)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35); MATHEMATICA CoefficientList[Series[((1-3*x^2-(1-x^2)*Sqrt[1-4*x^2])*1/2)/((1-2*x)* Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *) PROG (PARI) x='x+O('x^50); concat([0, 0, 0, 0, 0, 0], Vec((1-3*x^2-(1-x^2)*sqrt(1-4*x^2))/(2*(1-2*x)*sqrt(1-4*x^2)))) \\ G. C. Greubel, Mar 26 2017 CROSSREFS Cf. A001405, A191518. Sequence in context: A200085 A083708 A280588 * A037421 A083423 A068978 Adjacent sequences:  A191517 A191518 A191519 * A191521 A191522 A191523 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 03:23 EST 2021. Contains 349625 sequences. (Running on oeis4.)