login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191518
Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k UUU's (U=(1,1)).
3
1, 1, 2, 3, 6, 10, 19, 1, 33, 2, 62, 7, 1, 110, 14, 2, 205, 38, 8, 1, 368, 76, 16, 2, 683, 181, 50, 9, 1, 1235, 360, 101, 18, 2, 2286, 801, 270, 64, 10, 1, 4153, 1584, 546, 130, 20, 2, 7674, 3377, 1340, 387, 80, 11, 1, 13986, 6640, 2707, 790, 163, 22, 2, 25813, 13760, 6272, 2128, 536, 98, 12, 1
OFFSET
0,3
COMMENTS
Row n (n>=4) contains floor(n/2)-1 entries.
Sum of entries in row n is binomial(n,floor(n/2)) = A001405(n).
T(n,0) = A191519(n).
Sum_{k>=0} k*T(n,k) = A191520(n).
LINKS
FORMULA
G.f.: G=G(t,z) satisfies aG^2 + bG -1 = 0, where a=z(1-z-z^2-z^3-tz+tz^2+tz^3), and b=1-2z-z^2+tz^2.
EXAMPLE
T(7,1) = 2 because we have UUUDDDH and HUUUDDD, where U=(1,1), H=(1,0), and D=(1,-1).
Triangle starts:
1;
1;
2;
3;
6;
10;
19, 1;
33, 2;
62, 7, 1;
MAPLE
a := z*(1-z-z^2-z^3-t*z+t*z^2+t*z^3): b := 1-2*z-z^2+t*z^2: G := RootOf(a*g^2+b*g-1 = 0, g): Gser := simplify(series(G, z = 0, 21)): for n from 0 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 1; 2; 3; for n from 4 to 18 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)-2) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, min(t+1, 3))*
`if`(t=3, z, 1) +b(x-1, y-1, 1)+ `if`(y=0, b(x-1, 0, 1), 0))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..20); # Alois P. Heinz, Jun 02 2014
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, Min[t+1, 3]]*If[t == 3, z, 1] + b[x-1, y-1, 1] + If[y == 0, b[x-1, 0, 1], 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 07 2011
STATUS
approved