login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k UUU's (U=(1,1)).
3

%I #18 Jul 17 2017 02:16:45

%S 1,1,2,3,6,10,19,1,33,2,62,7,1,110,14,2,205,38,8,1,368,76,16,2,683,

%T 181,50,9,1,1235,360,101,18,2,2286,801,270,64,10,1,4153,1584,546,130,

%U 20,2,7674,3377,1340,387,80,11,1,13986,6640,2707,790,163,22,2,25813,13760,6272,2128,536,98,12,1

%N Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k UUU's (U=(1,1)).

%C Row n (n>=4) contains floor(n/2)-1 entries.

%C Sum of entries in row n is binomial(n,floor(n/2)) = A001405(n).

%C T(n,0) = A191519(n).

%C Sum_{k>=0} k*T(n,k) = A191520(n).

%H Alois P. Heinz, <a href="/A191518/b191518.txt">Rows n = 0..220, flattened</a>

%F G.f.: G=G(t,z) satisfies aG^2 + bG -1 = 0, where a=z(1-z-z^2-z^3-tz+tz^2+tz^3), and b=1-2z-z^2+tz^2.

%e T(7,1) = 2 because we have UUUDDDH and HUUUDDD, where U=(1,1), H=(1,0), and D=(1,-1).

%e Triangle starts:

%e 1;

%e 1;

%e 2;

%e 3;

%e 6;

%e 10;

%e 19, 1;

%e 33, 2;

%e 62, 7, 1;

%p a := z*(1-z-z^2-z^3-t*z+t*z^2+t*z^3): b := 1-2*z-z^2+t*z^2: G := RootOf(a*g^2+b*g-1 = 0, g): Gser := simplify(series(G, z = 0, 21)): for n from 0 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 1; 2; 3; for n from 4 to 18 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)-2) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,

%p `if`(x=0, 1, expand(b(x-1, y+1, min(t+1, 3))*

%p `if`(t=3, z, 1) +b(x-1, y-1, 1)+ `if`(y=0, b(x-1, 0, 1), 0))))

%p end:

%p T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):

%p seq(T(n), n=0..20); # _Alois P. Heinz_, Jun 02 2014

%t b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, Min[t+1, 3]]*If[t == 3, z, 1] + b[x-1, y-1, 1] + If[y == 0, b[x-1, 0, 1], 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)

%Y Cf. A001405, A191519, A191520.

%K nonn,tabf

%O 0,3

%A _Emeric Deutsch_, Jun 07 2011