login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191518 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k UUU's (U=(1,1)). 3

%I

%S 1,1,2,3,6,10,19,1,33,2,62,7,1,110,14,2,205,38,8,1,368,76,16,2,683,

%T 181,50,9,1,1235,360,101,18,2,2286,801,270,64,10,1,4153,1584,546,130,

%U 20,2,7674,3377,1340,387,80,11,1,13986,6640,2707,790,163,22,2,25813,13760,6272,2128,536,98,12,1

%N Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having k UUU's (U=(1,1)).

%C Row n (n>=4) contains floor(n/2)-1 entries.

%C Sum of entries in row n is binomial(n,floor(n/2)) = A001405(n).

%C T(n,0) = A191519(n).

%C Sum_{k>=0} k*T(n,k) = A191520(n).

%H Alois P. Heinz, <a href="/A191518/b191518.txt">Rows n = 0..220, flattened</a>

%F G.f.: G=G(t,z) satisfies aG^2 + bG -1 = 0, where a=z(1-z-z^2-z^3-tz+tz^2+tz^3), and b=1-2z-z^2+tz^2.

%e T(7,1) = 2 because we have UUUDDDH and HUUUDDD, where U=(1,1), H=(1,0), and D=(1,-1).

%e Triangle starts:

%e 1;

%e 1;

%e 2;

%e 3;

%e 6;

%e 10;

%e 19, 1;

%e 33, 2;

%e 62, 7, 1;

%p a := z*(1-z-z^2-z^3-t*z+t*z^2+t*z^3): b := 1-2*z-z^2+t*z^2: G := RootOf(a*g^2+b*g-1 = 0, g): Gser := simplify(series(G, z = 0, 21)): for n from 0 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 1; 2; 3; for n from 4 to 18 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)-2) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,

%p `if`(x=0, 1, expand(b(x-1, y+1, min(t+1, 3))*

%p `if`(t=3, z, 1) +b(x-1, y-1, 1)+ `if`(y=0, b(x-1, 0, 1), 0))))

%p end:

%p T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):

%p seq(T(n), n=0..20); # _Alois P. Heinz_, Jun 02 2014

%t b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, Min[t+1, 3]]*If[t == 3, z, 1] + b[x-1, y-1, 1] + If[y == 0, b[x-1, 0, 1], 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)

%Y Cf. A001405, A191519, A191520.

%K nonn,tabf

%O 0,3

%A _Emeric Deutsch_, Jun 07 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:12 EST 2021. Contains 349419 sequences. (Running on oeis4.)