login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191521
Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k valleys (i.e., a (1,-1)-step followed by a (1,1)-step).
3
1, 1, 2, 2, 1, 3, 3, 3, 6, 1, 4, 12, 4, 4, 18, 12, 1, 5, 30, 30, 5, 5, 40, 60, 20, 1, 6, 60, 120, 60, 6, 6, 75, 200, 150, 30, 1, 7, 105, 350, 350, 105, 7, 7, 126, 525, 700, 315, 42, 1, 8, 168, 840, 1400, 840, 168, 8, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 252, 1764, 4410, 4410, 1764, 252, 9
OFFSET
0,3
COMMENTS
Row n>=1 contains ceiling(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
Sum_{k>=0} k*T(n,k) = A191522(n).
LINKS
FORMULA
G.f.: G(t,z) = (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)), where Q = sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)).
T(n,k) = 2*C(n/2,k)*C(n/2,k+1)*(n/2+1)/n, for even n, C((n+1)/2,k+1)*Sum_{j=1..(n+1)/2} (-1)^(j-1)*C((n+1)/2,k-j+1), for odd n, T(0,0)=1. - Vladimir Kruchinin, Jul 24 2019
EXAMPLE
T(4,1)=3 because we have U(DU)D, U(DU)U, and UU(DU), where U=(1,1) and D=(1,-1) (the valleys are shown between parentheses).
Triangle starts:
1;
1;
2;
2, 1;
3, 3;
3, 6, 1;
4, 12, 4;
4, 18, 12, 1;
...
MAPLE
Q := sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)): G := (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 16 do seq(coeff(P[n], t, k), k = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,
`if`(y>0, b(x-1, y-1, z), 0)+b(x-1, y+1, 1)*t))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..30); # Alois P. Heinz, Mar 29 2017
MATHEMATICA
T[n_, m_] := If [n == 0 && m == 0, 1, If[n == 0, 0, If[OddQ[n-1], (2* Binomial[n/2, m]*Binomial[n/2, m+1]*(n/2 + 1))/n, Binomial[(n+1)/2, m+1]*Sum[(-1)^(k-1)*Binomial[(n+1)/2, m-k+1], {k, 1, (n+1)/2}]]]];
Table[T[n, m], {n, 0, 16}, {m, 0, If[n <= 2, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Feb 16 2021, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=0 and m=0 then 1 else if n=0 then 0 else if oddp(n-1) then (2*binomial(n/2, m)*binomial(n/2, m+1)*(n/2+1))/n else binomial((n+1)/2, m+1)*sum((-1)^(k-1)*binomial((n+1)/2, m-k+1), k, 1, (n+1)/2);
/* Vladimir Kruchinin, Jul 24 2019 */
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 05 2011
STATUS
approved