The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191521 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k valleys (i.e., a (1,-1)-step followed by a (1,1)-step). 3
 1, 1, 2, 2, 1, 3, 3, 3, 6, 1, 4, 12, 4, 4, 18, 12, 1, 5, 30, 30, 5, 5, 40, 60, 20, 1, 6, 60, 120, 60, 6, 6, 75, 200, 150, 30, 1, 7, 105, 350, 350, 105, 7, 7, 126, 525, 700, 315, 42, 1, 8, 168, 840, 1400, 840, 168, 8, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 252, 1764, 4410, 4410, 1764, 252, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row n>=1 contains ceiling(n/2) entries. Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n). Sum_{k>=0} k*T(n,k) = A191522(n). LINKS Alois P. Heinz, Rows n = 0..300, flattened FORMULA G.f.: G(t,z) = (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)), where Q = sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)). T(n,k) = 2*C(n/2,k)*C(n/2,k+1)*(n/2+1)/n, for even n, C((n+1)/2,k+1)*Sum_{j=1..(n+1)/2} (-1)^(j-1)*C((n+1)/2,k-j+1), for odd n, T(0,0)=1. - Vladimir Kruchinin, Jul 24 2019 EXAMPLE T(4,1)=3 because we have U(DU)D, U(DU)U, and UU(DU), where U=(1,1) and D=(1,-1) (the valleys are shown between parentheses). Triangle starts:   1;   1;   2;   2,  1;   3,  3;   3,  6,  1;   4, 12,  4;   4, 18, 12,  1;   ... MAPLE Q := sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)): G := (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 16 do seq(coeff(P[n], t, k), k = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form # second Maple program: b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,      `if`(y>0, b(x-1, y-1, z), 0)+b(x-1, y+1, 1)*t))     end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..30);  # Alois P. Heinz, Mar 29 2017 MATHEMATICA T[n_, m_] := If [n == 0 && m == 0, 1, If[n == 0, 0, If[OddQ[n-1], (2* Binomial[n/2, m]*Binomial[n/2, m+1]*(n/2 + 1))/n, Binomial[(n+1)/2, m+1]*Sum[(-1)^(k-1)*Binomial[(n+1)/2, m-k+1], {k, 1, (n+1)/2}]]]]; Table[T[n, m], {n, 0, 16}, {m, 0, If[n <= 2, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Feb 16 2021, after Vladimir Kruchinin *) PROG (Maxima) T(n, m):=if n=0 and m=0 then 1 else if n=0 then 0 else if oddp(n-1) then (2*binomial(n/2, m)*binomial(n/2, m+1)*(n/2+1))/n else binomial((n+1)/2, m+1)*sum((-1)^(k-1)*binomial((n+1)/2, m-k+1), k, 1, (n+1)/2); /* Vladimir Kruchinin, Jul 24 2019 */ CROSSREFS Cf. A001405, A124428, A191522. Sequence in context: A112209 A240127 A109524 * A245370 A321341 A284549 Adjacent sequences:  A191518 A191519 A191520 * A191522 A191523 A191524 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Jun 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)