login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124428 Triangle, read by rows: T(n,k) = binomial(floor(n/2),k)*binomial(floor((n+1)/2),k). 11
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 1, 9, 9, 1, 1, 12, 18, 4, 1, 16, 36, 16, 1, 1, 20, 60, 40, 5, 1, 25, 100, 100, 25, 1, 1, 30, 150, 200, 75, 6, 1, 36, 225, 400, 225, 36, 1, 1, 42, 315, 700, 525, 126, 7, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 56, 588, 1960, 2450, 1176, 196, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Row sums form A001405, the central binomial coefficients: C(n,floor(n/2)). The eigenvector of this triangle is A124430.

T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k peaks. Example: T(5,2)=3 because, denoting U=(1,1), D=(1,-1), H=1,0), we have HUDUD, UDHUD, and UDUDH. - Emeric Deutsch, Jun 01 2011

From Emeric Deutsch, Jan 18 2013: (Start)

T(n,k) is the number of Dyck prefixes of length n having k peaks. Example: T(5,2)=3 because we have (UD)(UD)U, (UD)U(UD), and U(UD)(UD); the peaks are shown between parentheses.

T(n,k) is the number of Dyck prefixes of length n having k ascents and descents of length >= 2. Example: T(5,2)=3 because we have (UU)(DD)U, (UU)D(UU), and (UUU)(DD); the ascents and descents of length >= 2 are shown between parentheses. (End)

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

A056953(n) = Sum_{k=0..floor(n/2)} k!*T(n,k).

A026003(n) = Sum_{k=0..floor(n/2)} 2^k*T(n,k).

EXAMPLE

Triangle begins:

  1;

  1;

  1,   1;

  1,   2;

  1,   4,   1;

  1,   6,   3;

  1,   9,   9,   1;

  1,  12,  18,   4;

  1,  16,  36,  16,   1;

  1,  20,  60,  40,   5;

  1,  25, 100, 100,  25,   1;

  1,  30, 150, 200,  75,   6;

  1,  36, 225, 400, 225,  36,   1; ...

MATHEMATICA

Table[Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k], {n, 0, 15}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Feb 24 2019 *)

PROG

(PARI) T(n, k)=binomial(n\2, k)*binomial((n+1)\2, k)

(MAGMA) [[Binomial(Floor(n/2), k)*Binomial(Floor((n+1)/2), k): k in [0..Floor(n/2)]]: n in [0..15]]; // G. C. Greubel, Feb 24 2019

(Sage) [[binomial(floor(n/2), k)*binomial(floor((n+1)/2), k) for k in (0..floor(n/2))] for n in (0..15)] # G. C. Greubel, Feb 24 2019

CROSSREFS

Cf. A001405 (row sums), A056953, A026003, A124429 (antidiagonal sums), A124430 (eigenvector), A191521.

Columns = A002378, A006011, A006542, etc.

Sequence in context: A131034 A130313 A247073 * A191310 A124845 A191392

Adjacent sequences:  A124425 A124426 A124427 * A124429 A124430 A124431

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Oct 31 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 05:54 EST 2020. Contains 332116 sequences. (Running on oeis4.)