

A124845


Triangle read by rows: T(n,k) = (3  (1)^k)*binomial(n,k)/2 (0 <= k <= n).


1



1, 1, 2, 1, 4, 1, 1, 6, 3, 2, 1, 8, 6, 8, 1, 1, 10, 10, 20, 5, 2, 1, 12, 15, 40, 15, 12, 1, 1, 14, 21, 70, 35, 42, 7, 2, 1, 16, 28, 112, 70, 112, 28, 16, 1, 1, 18, 36, 168, 126, 252, 84, 72, 9, 2, 1, 20, 45, 240, 210, 504, 210, 240, 45, 20, 1, 1, 22, 55, 330, 330, 924, 462, 660, 165
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Table of n, a(n) for n=0..74.


EXAMPLE

First few rows of the triangle:
1;
1, 2;
1, 4, 1;
1, 6, 3, 2;
1, 8, 6, 8, 1;
1, 10, 10, 20, 5, 2;
1, 12, 15, 40, 15, 12, 1;
...
Row 3 sum = 12 = (1 + 6 + 3 + 2) = A003945(3).


MAPLE

T:=(n, k)>(3(1)^k)*binomial(n, k)/2: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form


CROSSREFS

Cf. A003945.
Sequence in context: A247073 A124428 A191310 * A191392 A127625 A124844
Adjacent sequences: A124842 A124843 A124844 * A124846 A124847 A124848


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Nov 10 2006


EXTENSIONS

Edited by N. J. A. Sloane, Nov 24 2006


STATUS

approved



