

A124846


Triangle read by rows: T(n,k) = (2  (1)^k)*binomial(n,k) (0 <= k <= n).


1



1, 1, 3, 1, 6, 1, 1, 9, 3, 3, 1, 12, 6, 12, 1, 1, 15, 10, 30, 5, 3, 1, 18, 15, 60, 15, 18, 1, 1, 21, 21, 105, 35, 63, 7, 3, 1, 24, 28, 168, 70, 168, 28, 24, 1, 1, 27, 36, 252, 126, 378, 84, 108, 9, 3, 1, 30, 45, 360, 210, 756, 210, 360, 45, 30, 1, 1, 33, 55, 495, 330, 1386, 462, 990
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS



EXAMPLE

First few rows of the triangle:
1;
1, 3;
1, 6, 1;
1, 9, 3, 3;
1, 12, 6, 12, 1;
1, 15, 10, 30, 5, 3;
...
A046055(4) = 16 = sum of row 4 terms (1 + 9 + 3 + 3).


MAPLE

T:=(n, k)>(2(1)^k)*binomial(n, k): for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



