login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177375
Triangle t(n,k): the coefficient [x^k] of the series (1+x)^n + 2*n*x*(1+x)^(n-2), in row n, column k.
1
1, 1, 3, 1, 6, 1, 1, 9, 9, 1, 1, 12, 22, 12, 1, 1, 15, 40, 40, 15, 1, 1, 18, 63, 92, 63, 18, 1, 1, 21, 91, 175, 175, 91, 21, 1, 1, 24, 124, 296, 390, 296, 124, 24, 1, 1, 27, 162, 462, 756, 756, 462, 162, 27, 1, 1, 30, 205, 680, 1330, 1652, 1330, 680, 205, 30, 1
OFFSET
0,3
COMMENTS
Row sums are in A001792.
EXAMPLE
1;
1, 3;
1, 6, 1;
1, 9, 9, 1;
1, 12, 22, 12, 1;
1, 15, 40, 40, 15, 1;
1, 18, 63, 92, 63, 18, 1;
1, 21, 91, 175, 175, 91, 21, 1;
1, 24, 124, 296, 390, 296, 124, 24, 1;
1, 27, 162, 462, 756, 756, 462, 162, 27, 1;
1, 30, 205, 680, 1330, 1652, 1330, 680, 205, 30, 1;
MAPLE
A177375 := proc(n, k)
(1+x)^n+2*n*x*(1+x)^(n-2) ;
coeftayl(%, x=0, k)
end proc: # R. J. Mathar, May 19 2013
MATHEMATICA
p[x, 0, q_] := 1; p[x, 1, q_] := x + 1;
p[x_, n_, q_] := p[x, n, q] = (1 + x)^n + 2*q*n*x*(1 + x)^(n - 2);
Table[Flatten[Table[CoefficientList[p[x, n, q], x], {n, 0, 10}]], {q, 1, 10}]
CROSSREFS
Sequence in context: A213670 A116609 A124846 * A099512 A127096 A130541
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 07 2010
STATUS
approved