login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177378
a(n) is the smallest prime p>2 such that there are 2*n or 2*n+1 positive integers m for which the exponents of 2 and p in the prime power factorization of m! are both powers of 2.
5
11, 13, 3, 29, 31, 251, 127, 509, 1021, 4091, 4093, 65519, 8191, 131063, 262133, 262139, 131071, 1048571, 524287, 8388593, 4194301, 67108837, 16777213, 67108861, 1073741789, 2147483587, 2147483629, 536870909
OFFSET
1,1
LINKS
V. Shevelev, Compact integers and factorials, Acta Arithmetica 126 (2007), no. 3, 195-236.
FORMULA
For sufficiently large n, 2^n - 1 <= a(n) <= 2^ceiling(40*n/19). Let k >= n. Put g = g(n,k) = min{odd j >= 2^(k-n): 2^k - j is prime} and h(n) = min{k: k - n = floor(log_2(g))}. Then a(n) = 2^h(n) - g(n,h(n)).
EXAMPLE
By the formula, for n=6, consider k >= 6. If k=6, then g(6,6) = 3, but 6 does not equal to 6 - floor(log_2(3)); if k=7, then g=15, but 6 does not equal to 7 - floor(log_2(15)); if k=8, then g=5 and we see that 6 = 8 - floor(log_2(5)). Therefore a(6) = 2^8 - 5 = 251.
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 07 2010
STATUS
approved