

A177459


The maximal positive integer m for which the exponents of 2 and prime(n) in the prime power factorization of m! are both powers of 2.


4



19, 131, 34, 19, 35, 35, 35, 67, 259, 575, 67, 67, 67, 131, 259, 515, 1027, 131, 131, 131, 131, 131, 259, 259, 259, 514, 515, 515, 515, 8195
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Or a(n) is the maximal m for which the FermiDirac representation of m! (see comment in A050376) contains single power of 2 and single power of prime(n).


LINKS

Table of n, a(n) for n=2..31.
V. Shevelev, Compact integers and factorials, Acta Arithmetica 126 (2007), no. 3, 195236.


FORMULA

a(2)=19, a(3)=131; if prime(n) has the form (2^(4k+1)+3)/5 for k>=1,then a(n)=5*prime(n)1; if prime(n)>=17 is Fermat prime, then a(n)=2*prime(n)+1; if prime(n) has the form 2^k+3 for k>=3, then a(n)=2*prime(n)3; otherwise, if prime(n) is in interval [2^(k1)+5, 2^k) for k>=4, then a(n)=3+2^(k+floor(log_2((p_n5)/(2^kprime(n)))). In any case, a(n)<=(1/2)*(prime(n)+1)^2+3. Equality holds for Mersenne primes>=31.


EXAMPLE

For n=31, prime(n)=127 is Mersenne primes. Thus a(31)=(1/2)*128^2+3=8195.


CROSSREFS

Cf. A000142, A177436, A177378, A177355, A177349, A177458, A177498, A050376, A169655, A169661.
Sequence in context: A078851 A202125 A169727 * A142649 A020867 A022679
Adjacent sequences: A177456 A177457 A177458 * A177460 A177461 A177462


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, May 09 2010


STATUS

approved



