login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020867
Number of forests with no isolated vertices in Moebius ladder M_n.
1
19, 132, 851, 5298, 32068, 190711, 1120947, 6537903, 37935984, 219360837, 1265462984, 7288685420, 41935203469, 241094585397, 1385405494499, 7958227879396, 45703889854759, 262433722095008, 1506738689157576, 8650141792937245, 49657618346464719
OFFSET
2,1
LINKS
J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
Index entries for linear recurrences with constant coefficients, signature (11,-33,4,78,-39,-61,33,19,-10,-2,1).
FORMULA
G.f.: see G in the Maple program. - Emeric Deutsch, Dec 21 2004
MAPLE
G:=-(3*x^10-5*x^9-30*x^8+47*x^7+107*x^6-162*x^5-137*x^4+217*x^3+26*x^2-77*x+19)*x^2/(-1+6*x-x^2-3*x^3+x^4)/(1-4*x+x^3)/(-1+x+x^2)/(x^2-1): Gser:=series(G, x=0, 25): seq(coeff(Gser, x^n), n=2..23); # Emeric Deutsch, Dec 21 2004
PROG
(PARI) Vec(-x^2*(3*x^10 -5*x^9 -30*x^8 +47*x^7 +107*x^6 -162*x^5 -137*x^4 +217*x^3 +26*x^2 -77*x +19) / ((x -1)*(x +1)*(x^2 +x -1)*(x^3 -4*x +1)*(x^4 -3*x^3 -x^2 +6*x -1)) + O(x^30)) \\ Colin Barker, Aug 01 2015
CROSSREFS
Sequence in context: A338300 A177459 A142649 * A022679 A108673 A041692
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Dec 21 2004
STATUS
approved