login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020866
Number of strong edge-subgraphs in Moebius ladder M_n.
4
41, 265, 1697, 10897, 69941, 448945, 2881697, 18497137, 118730021, 762108145, 4891844657, 31399932337, 201550911701, 1293721577905, 8304182337857, 53303156937457, 342144045482501, 2196165379031665, 14096818096762577, 90485116626705457, 580808823292457141
OFFSET
2,1
COMMENTS
Also known as the number of edge covers in the Moebius ladder M_n. - Eric W. Weisstein, Mar 31 2017
LINKS
J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.
FORMULA
a(n) = Lucas(2n) + [x^n] x(4+2x+3x^2-4x^3+x^4)/((1+x)(1-3x+x^2)(1-6x-3x^2+2x^3)); a(n) ~ (6.4188)^n + (-0.8056)^n + (0.3867)^n - (- 1)^n (Th. 3.2.). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 5*a(n-1) + 9*a(n-2) + a(n-3) - 2*a(n-4).
G.f.: -x^2*(-41-60*x-3*x^2+14*x^3)/ ((1+x) * (2*x^3-3*x^2-6*x+1)). (End)
MAPLE
with(combinat): lucas:= n->fibonacci(n+1)+fibonacci(n-1):seq(lucas(2*n)+coeff(convert(series(x*(4+2*x+3*x^2-4*x^3+x^4)/((1+x)*(1-3*x+x^2)*(1-6*x-3*x^2+2*x^3)), x, 50), polynom), x, n), n=2..25); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
MATHEMATICA
Table[RootSum[2 - 3 # - 6 #^2 + #^3 &, #^n &] - (-1)^n, {n, 2, 20}] (* Eric W. Weisstein, Mar 31 2017 *)
LinearRecurrence[{5, 9, 1, -2}, {41, 265, 1697, 10897}, 20] (* Eric W. Weisstein, Mar 31 2017 *)
PROG
(PARI) Vec(-x^2*(14*x^3-3*x^2-60*x-41)/((x+1)*(2*x^3-3*x^2-6*x+1)) + O(x^30)) \\ Colin Barker, Aug 02 2015
CROSSREFS
Sequence in context: A142113 A226041 A233406 * A142690 A089318 A180475
KEYWORD
nonn,easy
EXTENSIONS
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
STATUS
approved