|
|
A180475
|
|
Primes of the form p^5 + p^3 + 1 where p is a prime.
|
|
1
|
|
|
41, 271, 3251, 1424771, 6448511, 115925123, 229448831, 18425794691, 38581737743, 48264295811, 73443083699, 996266439503, 1258302388991, 1752012093443, 2159450038451, 2909420102783, 3201110256371, 18248780996099, 32198944966271, 124287677598479, 142214634995891
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Michael S. Branicky, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) ~ prime(n)^18.
|
|
EXAMPLE
|
115925123 is a term since 41^5 + 41^3 + 1 = 115925123 is prime.
|
|
MATHEMATICA
|
Select[ #^5 + #^3 + 1 & /@ Prime@ Range@ 90, PrimeQ] (* Robert G. Wilson v, Sep 10 2010 *)
|
|
PROG
|
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
p = 2
while True:
t = p**5 + p**3 + 1
if isprime(t):
yield t
p = nextprime(p)
print(list(islice(agen(), 21))) # Michael S. Branicky, Mar 12 2022
|
|
CROSSREFS
|
Cf. A000040, A180474.
Sequence in context: A020866 A142690 A089318 * A142768 A140013 A342299
Adjacent sequences: A180472 A180473 A180474 * A180476 A180477 A180478
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Carmine Suriano, Sep 07 2010
|
|
EXTENSIONS
|
a(19) and beyond from Michael S. Branicky, Mar 12 2022
|
|
STATUS
|
approved
|
|
|
|