login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180473
Expansion of o.g.f. x*s(x)/(1-x*s(x)-x^2*s(x)^2), where s(x) is the o.g.f. of the little Schroeder numbers (A001003).
1
1, 2, 7, 27, 114, 509, 2365, 11318, 55411, 276231, 1397430, 7156089, 37023225, 193229466, 1016141199, 5378940051, 28638955098, 153267403397, 824014568581, 4448456379134, 24104579252971, 131055735586767, 714741620026542, 3908997981612017, 21434123083817329
OFFSET
1,2
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = Sum_{k=1..n} (k/(2^k*n))*(Sum_{j=0..n-k} binomial(n,j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1, n-1))*Fibonacci(k).
PROG
(Maxima) a(n):=sum(k/(2^k*n)*sum(binomial(n, j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1, n-1), j, 0, n-k)*fib(k), k, 1, n);
(PARI) seq(n)={my(p=x*(1+x-sqrt(1 - 6*x + x^2 + O(x*x^n)))/(4*x)); Vec(p/(1 - p - p^2))} \\ Andrew Howroyd, Apr 17 2021
CROSSREFS
Sequence in context: A150628 A106225 A127897 * A011965 A154108 A150629
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Sep 07 2010
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Apr 17 2021
STATUS
approved