login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of o.g.f. x*s(x)/(1-x*s(x)-x^2*s(x)^2), where s(x) is the o.g.f. of the little Schroeder numbers (A001003).
1

%I #16 Oct 30 2022 08:59:57

%S 1,2,7,27,114,509,2365,11318,55411,276231,1397430,7156089,37023225,

%T 193229466,1016141199,5378940051,28638955098,153267403397,

%U 824014568581,4448456379134,24104579252971,131055735586767,714741620026542,3908997981612017,21434123083817329

%N Expansion of o.g.f. x*s(x)/(1-x*s(x)-x^2*s(x)^2), where s(x) is the o.g.f. of the little Schroeder numbers (A001003).

%H Andrew Howroyd, <a href="/A180473/b180473.txt">Table of n, a(n) for n = 1..500</a>

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F a(n) = Sum_{k=1..n} (k/(2^k*n))*(Sum_{j=0..n-k} binomial(n,j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1, n-1))*Fibonacci(k).

%o (Maxima) a(n):=sum(k/(2^k*n)*sum(binomial(n,j)*2^(n-j)*(-1)^j*binomial(2*n-k-j-1,n-1),j,0,n-k)*fib(k),k,1,n);

%o (PARI) seq(n)={my(p=x*(1+x-sqrt(1 - 6*x + x^2 + O(x*x^n)))/(4*x)); Vec(p/(1 - p - p^2))} \\ _Andrew Howroyd_, Apr 17 2021

%K nonn

%O 1,2

%A _Vladimir Kruchinin_, Sep 07 2010

%E Terms a(21) and beyond from _Andrew Howroyd_, Apr 17 2021