login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154108 A000110 / (1,2,3,...): (convolved with (1,2,3,...) = Bell numbers. 2
1, 0, 2, 7, 27, 114, 523, 2589, 13744, 77821, 467767, 2972432, 19895813, 139824045, 1028804338, 7905124379, 63287544055, 526827208698, 4551453462543, 40740750631417, 377254241891064, 3608700264369193, 35613444194346451, 362161573323083920, 3790824599495473121 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This is the sequence which must be convolved with (1,2,3,...), offset 0, to generate the Bell numbers starting (1, 2, 5, 15, 52, ...) offset 1;

equivalent to row sums of triangle A154109 = (1, 2, 5, 15, 52, ...).

A variant of A011965. - R. J. Mathar, Jan 07 2009

LINKS

Table of n, a(n) for n=1..25.

FORMULA

A000110 / (1,2,3,...); where A000110 (the Bell numbers) begins with offset 1: (1, 2, 5, 15, 52, 203, 877, ...).

G.f.: (A000110(x)-1)*(x-1)^2, where A0000110(x) is the g.f. of the Bell numbers. - R. J. Mathar, Nov 27 2018

EXAMPLE

A000110(5) = 52 = (1, 0, 2, 7, 27) convolved with (1, 2, 3, 4, 5) = (5 + 0 + 6 + 14 + 27).

MATHEMATICA

nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*(n-k), {k, 0, n}]==BellB[n], {n, 1, nmax+1}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)

CROSSREFS

Cf. A000110, A154109.

Sequence in context: A127897 A180473 A011965 * A150629 A150630 A150631

Adjacent sequences:  A154105 A154106 A154107 * A154109 A154110 A154111

KEYWORD

nonn

AUTHOR

Gary W. Adamson, Jan 04 2009

EXTENSIONS

More terms from Vaclav Kotesovec, Jul 26 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 19:51 EDT 2021. Contains 347598 sequences. (Running on oeis4.)