OFFSET
1,3
COMMENTS
This is the sequence which must be convolved with (1,2,3,...), offset 0, to generate the Bell numbers starting (1, 2, 5, 15, 52, ...) offset 1;
equivalent to row sums of triangle A154109 = (1, 2, 5, 15, 52, ...).
A variant of A011965. - R. J. Mathar, Jan 07 2009
FORMULA
A000110 / (1,2,3,...); where A000110 (the Bell numbers) begins with offset 1: (1, 2, 5, 15, 52, 203, 877, ...).
G.f.: (A000110(x)-1)*(x-1)^2, where A000110(x) is the g.f. of the Bell numbers. - R. J. Mathar, Nov 27 2018
EXAMPLE
A000110(5) = 52 = (1, 0, 2, 7, 27) convolved with (1, 2, 3, 4, 5) = (5 + 0 + 6 + 14 + 27).
MATHEMATICA
nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*(n-k), {k, 0, n}]==BellB[n], {n, 1, nmax+1}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jan 04 2009
EXTENSIONS
More terms from Vaclav Kotesovec, Jul 26 2021
STATUS
approved