login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154107
A000110 / A014182: (A154107 convolved with A014182 = Bell numbers).
3
1, 1, 3, 5, 15, 61, 207, 881, 4491, 21493, 117543, 710021, 4266279, 28107745, 196120515, 1397747525, 10648637151, 84304440685, 688868927151, 5913133211249, 52348170504555, 479326416322933, 4557380168574135, 44560107679838549, 449806788855058407, 4680686977970550721
OFFSET
0,3
COMMENTS
A000110 / A014182 = (the eigensequence of Pascal's triangle) /
(eigensequence of the inverse of Pascal's triangle).
A014182 = expansion of exp(1-x-exp(-x)).
FORMULA
A000110 / A014182 = (1, 1, 2, 5, 15, 52, 203,...) / (1, 0, -1, 1, 2, -9, 9, 50,...).
EXAMPLE
A000110 = 52 = (1, 1, 3, 5, 15, 61) convolved with (1, 0, -1, 1, 2, -9)
= (61 - 5 + 3 + 2 - 9)
MATHEMATICA
nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*Sum[(-1)^(n-k-m)*StirlingS2[n-k+1, m+1], {m, 0, n-k}], {k, 0, n}]==BellB[n], {n, 0, nmax}], a][[1]], {j, 0, nmax}] (* Vaclav Kotesovec, Jul 26 2021 *)
CROSSREFS
Sequence in context: A177814 A018702 A018719 * A305873 A307999 A018771
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jan 04 2009
EXTENSIONS
a(12) corrected and more terms added from Vaclav Kotesovec, Jul 26 2021
STATUS
approved