login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154105 a(n) = 12*n^2 + 18*n + 7. 4
7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010

Sequence found by reading the line from 7, in the direction 7, 37, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..3000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (7 + 16*x + x^2)/(1-x)^3.

a(n) = 6*A014106(n) + 7.

a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.

a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011

E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016

a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018

EXAMPLE

a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.

a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.

a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.

MATHEMATICA

Table[12*n^2 + 18*n + 7, {n, 0, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)

LinearRecurrence[{3, -3, 1}, {7, 37, 91}, 25] (* G. C. Greubel, Sep 02 2016 *)

PROG

(MAGMA) [ 12*n^2+18*n+7: n in [0..40] ];

(PARI) a(n)=12*n^2+18*n+7 \\ Charles R Greathouse IV, Sep 02 2016

CROSSREFS

Cf. A001082, A014106, A152746, A153286, A085473.

Sequence in context: A031395 A138906 A107938 * A159491 A106064 A282001

Adjacent sequences:  A154102 A154103 A154104 * A154106 A154107 A154108

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Jan 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 04:26 EDT 2019. Contains 325064 sequences. (Running on oeis4.)