login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152746 Six times hexagonal numbers: 6*n*(2*n-1). 14
0, 6, 36, 90, 168, 270, 396, 546, 720, 918, 1140, 1386, 1656, 1950, 2268, 2610, 2976, 3366, 3780, 4218, 4680, 5166, 5676, 6210, 6768, 7350, 7956, 8586, 9240, 9918, 10620, 11346, 12096, 12870, 13668, 14490, 15336, 16206, 17100 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 18 2011
a(n) is the number of walks on a cubic lattice of n dimensions that return to the origin, not necessarily for the first time, after 4 steps. - Shel Kaphan, Mar 20 2023
LINKS
FORMULA
a(n) = 12*n^2 - 6*n = A000384(n)*6 = A002939(n)*3 = A094159(n)*2.
a(n) = a(n-1) + 24*n - 18 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From G. C. Greubel, Sep 01 2018: (Start)
G.f.: 6*x*(1+3*x)/(1-x)^3.
E.g.f.: 6*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Mar 30 2023: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/12 - log(2)/6. (End)
MATHEMATICA
6*PolygonalNumber[6, Range[0, 40]] (* The program uses the PolygonalNumber function from Mathematica version 10 *) (* Harvey P. Dale, Mar 04 2016 *)
LinearRecurrence[{3, -3, 1}, {0, 6, 36}, 50] (* or *) Table[6*n*(2*n-1), {n, 0, 50}] (* G. C. Greubel, Sep 01 2018 *)
PROG
(PARI) a(n)=6*n*(2*n-1) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [6*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Sep 01 2018
CROSSREFS
Column n=2 of A287318.
Sequence in context: A207896 A207656 A207341 * A207363 A207600 A207026
KEYWORD
easy,nonn,walk
AUTHOR
Omar E. Pol, Dec 12 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:30 EST 2023. Contains 367679 sequences. (Running on oeis4.)