login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002939 a(n) = 2*n*(2*n-1). 55
0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Write 0,1,2,... in a spiral; sequence gives numbers on one of 4 diagonals (see Example section).

For n>1 this is the Engel expansion of cosh(1), A118239. - Benoit Cloitre, Mar 03 2002

a(n) = A125199(n,n) for n>0. - Reinhard Zumkeller, Nov 24 2006

Central terms of the triangle in A195437: a(n+1) = A195437(2*n,n). - Reinhard Zumkeller, Nov 23 2011

For n>2, the terms represent the sums of those primitive Pythagorean triples with hypotenuse (H) one unit longer than the longest side (L), or H = L + 1. - Richard R. Forberg, Jun 09 2015

For n>1, a(n) is the perimeter of a Pythagorean triangle with an odd leg 2*n-1. - Agola Kisira Odero, Apr 26 2016

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).

Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003

a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008

From R. J. Mathar, Apr 23 2009: (Start)

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

G.f.: 2*x*(1+3*x)/(1-x)^3. (End)

a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010

a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013

Product_{k=1..n} a(k) = (2n)!. - Tony Foster III, Sep 06 2015

E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016

a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017

0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017

EXAMPLE

G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...

On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:

   99  64--65--66--67--68--69--70--71--72

    |   |                               |

   98  63  36--37--38--39--40--41--42  73

    |   |   |                       |   |

   97  62  35  16--17--18--19--20  43  74

    |   |   |   |               |   |   |

   96  61  34  15   4---5---6  21  44  75

    |   |   |   |   |       |   |   |   |

   95  60  33  14   3  *0*  7  22  45  76

    |   |   |   |   |   |   |   |   |   |

   94  59  32  13  *2*--1   8  23  46  77

    |   |   |   |           |   |   |   |

   93  58  31 *12*-11--10---9  24  47  78

    |   |   |                   |   |   |

   92  57 *30*-29--28--27--26--25  48  79

    |   |                           |   |

   91 *56*-55--54--53--52--51--50--49  80

    |                                   |

  *90*-89--88--87--86--85--84--83--82--81

[Edited by Jon E. Schoenfield, Jan 01 2017]

MAPLE

A002939:=n->2*n*(2*n-1): seq(A002939(n), n=0..100); # Wesley Ivan Hurt, Jan 28 2017

MATHEMATICA

Table[2*n*(2*n-1), {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)

2#(2#-1)&/@Range[0, 50]  (* Harvey P. Dale, Mar 06 2011 *)

PROG

(PARI) a(n)=2*binomial(2*n, 2) \\ Charles R Greathouse IV, Jul 25 2011

(MAGMA) [2*n*(2*n-1): n in [0..50]]; // Vincenzo Librandi, Jul 26 2011

(Haskell)

a002939 n = (* 2) . a000384

a002939_list = scanl1 (+) a017089_list

-- Reinhard Zumkeller, Jun 08 2015

(Python) a=lambda n: 2*n*(2*n-1) # Indranil Ghosh, Jan 01 2017

CROSSREFS

Sequences from spirals: A001107, A002939, A007742, A033951-A033953, A033954, A033989-A033991, A002943, A033996, A033988.

Cf. A016789, A017041, A017485, A125202.

Cf. numbers of the form n*(n*k-k+4))/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013

Cf. A017089 (first differences).

Sequence in context: A156021 A067348 * A118239 A249055 A127118 A259127

Adjacent sequences:  A002936 A002937 A002938 * A002940 A002941 A002942

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 06:52 EDT 2017. Contains 285508 sequences.