login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287318
Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
8
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
OFFSET
0,5
FORMULA
A(n,k) = A287316(n,k) * binomial(2*n,n).
EXAMPLE
Arrays start:
k\n| 0 1 2 3 4 5 6
---|---------------------------------------------------------
k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007
k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984
k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894
k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896
k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699
k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317
k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258
k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...
k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...
k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
MAPLE
A287318_row := proc(k, len) local b, ser;
b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
seq((2*i)!*coeff(ser, x, i), i=0..len-1) end:
for k from 0 to 6 do A287318_row(k, 9) od;
MATHEMATICA
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
CROSSREFS
Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5), A356258 (k=6).
Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).
Main diagonal gives A303503.
Cf. A287316.
Sequence in context: A128749 A106579 A378318 * A329020 A351640 A173003
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 23 2017
STATUS
approved