login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356258
Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
2
1, 12, 396, 19920, 1281420, 96807312, 8175770064, 748315668672, 72729762868620, 7402621930738320, 781429888276676496, 84955810313787521472, 9463540456205136873936, 1075903653146632508721600, 124461755084172965028753600, 14615050011682746903615601920
OFFSET
0,2
LINKS
FORMULA
E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^6. (I = Modified Bessel function first kind).
a(n) = Sum_{h+i+j+k+l+m=n, 0<=h,i,j,k,l,m<=n} multinomial(2n [h,h,i,i,j,j,k,k,l,l,m,m]). - Shel Kaphan, Jan 29 2023
EXAMPLE
a(1)=12, because twelve paths start at the origin, visit one of the adjacent vertices, and immediately return to the origin, resulting in 12 different paths of length 2n=2*1=2.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
a:= n-> (2*n)!*b(n, 6)/n!^2:
seq(a(n), n=0..15); # Alois P. Heinz, Jan 30 2023
CROSSREFS
Row k=6 of A287318.
1-5 dimensional analogs are A000984, A002894, A002896, A039699, A287317.
Sequence in context: A138914 A326220 A308129 * A286038 A276482 A202788
KEYWORD
nonn,easy,walk
AUTHOR
Dave R.M. Langers, Oct 12 2022
STATUS
approved