Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Mar 10 2023 08:59:53
%S 1,12,396,19920,1281420,96807312,8175770064,748315668672,
%T 72729762868620,7402621930738320,781429888276676496,
%U 84955810313787521472,9463540456205136873936,1075903653146632508721600,124461755084172965028753600,14615050011682746903615601920
%N Number of 6-dimensional cubic lattice walks that start and end at origin after 2n steps, free to pass through origin at intermediate stages.
%H Alois P. Heinz, <a href="/A356258/b356258.txt">Table of n, a(n) for n = 0..467</a>
%F E.g.f.: Sum_{n>=0} a(2*n) * x^(2*n)/(2*n)! = I_0(2*x)^6. (I = Modified Bessel function first kind).
%F a(n) = Sum_{h+i+j+k+l+m=n, 0<=h,i,j,k,l,m<=n} multinomial(2n [h,h,i,i,j,j,k,k,l,l,m,m]). - _Shel Kaphan_, Jan 29 2023
%e a(1)=12, because twelve paths start at the origin, visit one of the adjacent vertices, and immediately return to the origin, resulting in 12 different paths of length 2n=2*1=2.
%p b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
%p add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
%p end:
%p a:= n-> (2*n)!*b(n, 6)/n!^2:
%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jan 30 2023
%Y Row k=6 of A287318.
%Y 1-5 dimensional analogs are A000984, A002894, A002896, A039699, A287317.
%K nonn,easy,walk
%O 0,2
%A _Dave R.M. Langers_, Oct 12 2022