login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286038
Number of (undirected) paths in the n-cocktail party graph.
1
0, 12, 396, 21672, 1918920, 250696980, 45304472052, 10816917169296, 3296928965854032, 1248938916843586140, 575559130836761023260, 317049200473798671358392, 205722831410326997504441496, 155295648728262284680608862692, 134934407215203512994225979686660
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Graph Path
FORMULA
a(n) = (1/2) * (-2*n - 1 + Sum_{j=0..n} Sum_{k=2*j..2*n} (-1)^j*2^j*(k-j)! * binomial(n,j) * binomial(2*n-2*j,k-2*j) ). - Andrew Howroyd, Jun 19 2017
MATHEMATICA
a[n_] := (1/2)*(-2n - 1 + Sum[Sum[(-1)^j*2^j*(k - j)!*Binomial[n, j]* Binomial[2n - 2j, k - 2j], {k, 2j, 2n}], {j, 0, n}]);
Array[a, 15] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
Table[(Sum[(-2)^k Binomial[n, k] k! HypergeometricU[k + 1, 2 n + 2 - k, 1], {k, 0, n}] - 2 n - 1)/2, {n, 20}] // FunctionExpand (* Eric W. Weisstein, Oct 02 2017 *)
PROG
(PARI)
a(n) = (-2*n-1 + sum(j=0, n, sum(k=2*j, 2*n, (-1)^j*2^j*(k-j)! * binomial(n, j) * binomial(2*n-2*j, k-2*j))) )/2; \\ Andrew Howroyd, Jun 19 2017
CROSSREFS
Cf. A167987 (cycles), A007060 (Hamiltonian paths), A129348 (Hamiltonian cycles).
Sequence in context: A326220 A308129 A356258 * A276482 A202788 A285028
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jun 15 2017
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Jun 19 2017
STATUS
approved