login
A129348
Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.
9
0, 2, 32, 1488, 112512, 12771840, 2036229120, 434469611520, 119619533537280, 41303040523960320, 17481826772405452800, 8902337068174698086400, 5370014079716477003366400, 3786918976243761421064601600, 3087031512410698159166482022400, 2880726660365605475506018320384000
OFFSET
1,2
COMMENTS
Also, the number of ways (up to rotations) to seat n married couples at a circular table with no spouses next to each other. Cf. A007060, A193639. - Geoffrey Critzer, Feb 09 2014
The cocktail party graph may also be called the n-octahedron, n-orthoplex or n-dimensional cross polytope. - Andrew Howroyd, May 14 2017
LINKS
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
FORMULA
For n>=2, a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*(2*n-1-k)!*2^k. - Geoffrey Critzer, Feb 09 2014
Recurrence (for n>=4): (2*n-3)*a(n) = 2*(n-1)*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-2)*(n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n-1/2) / exp(2*n+1). - Vaclav Kotesovec, Feb 09 2014
For n>=2, a(n) = (-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2]. - Eric W. Weisstein, Mar 29 2014
a(n) = A003435(n) / (2*n) = A003436(n) * (n-1)! * 2^(n-1). - Andrew Howroyd, May 14 2017
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(n-1),
((136*n^3-608*n^2+762*n-470) *a(n-1)
+4*(n-2)*(14*n^2+29*n-193) *a(n-2)
-80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 09 2014
MATHEMATICA
Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* Geoffrey Critzer, Feb 09 2014 *)
Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
n > 1}}], {n, 16}] (* Eric W. Weisstein, Mar 29 2014 *)
PROG
(PARI) { A129348(n) = sum(m=0, n-1, sum(k=1, n-m, (-1)^k * binomial(n-1, m) * binomial(n-m-1, k-1) * 2^(k-1) * ([0, k-1, 2*(n-m-k); 1, k-2, 2*(n-m-k); 1, k-1, 2*(n-m-k-1)]^(2*n))[1, 1] ) + sum(k=0, n-m, (-1)^k * binomial(n-1, m) * binomial(n-m-1, k) * 2^(k-1) * ([0, k, 2*(n-m-k-1); 2, k-1, 2*(n-m-k-1); 2, k, 2*(n-m-k-2)]^(2*n))[1, 1] ) ) } \\ Max Alekseyev, Dec 22 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 10 2007
EXTENSIONS
Terms a(6) onward from Max Alekseyev, Nov 10 2007
STATUS
approved