login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280211
a(n) = n*(2^(n^2)).
1
0, 2, 32, 1536, 262144, 167772160, 412316860416, 3940649673949184, 147573952589676412928, 21760664753063325144711168, 12676506002282294014967032053760, 29243015907268149203883755326167580672, 267608942382367477698428619271780338071764992, 9727754898074489823563726246559579778829887006048256
OFFSET
0,2
COMMENTS
a(n) = n with the bits shifted to the left by n^2 places (new bits on the right hand side are zeros) i.e, a(n) = n<<(n**2).
a(n) is always even.
a(n) mod 32 = 0 for n>=2.
FORMULA
a(n) = n*(2^(n^2)).
a(n) = n*A002416(n). - Omar E. Pol, Jan 06 2017
MATHEMATICA
Table[n*2^n^2, {n, 0, 20}] (* Harvey P. Dale, Jan 01 2021 *)
PROG
(Python) a=lambda n: n<<(n**2)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Indranil Ghosh, Jan 06 2017
STATUS
approved