login
A129345
a(2n) = A001542(n+1), a(2n+1) = A038761(n+1); a Pellian-related sequence.
2
2, 9, 12, 53, 70, 309, 408, 1801, 2378, 10497, 13860, 61181, 80782, 356589, 470832, 2078353, 2744210, 12113529, 15994428, 70602821, 93222358, 411503397, 543339720, 2398417561, 3166815962, 13979001969, 18457556052, 81475594253, 107578520350, 474874563549
OFFSET
0,1
COMMENTS
Summation of -a(n) and A129346 returns twice Pell numbers A000129 (apart from signs; starting from 2nd term of A000129).
FORMULA
G.f.: (2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
From Colin Barker, May 26 2016: (Start)
a(n) = ((-1-sqrt(2))^(1+n)-(-1+sqrt(2))^(1+n)+(1-sqrt(2))^n*(-4+3*sqrt(2))+(1+sqrt(2))^n*(4+3*sqrt(2)))/(2*sqrt(2)).
a(n) = 6*a(n-2)-a(n-4) for n>3.
(End)
MATHEMATICA
CoefficientList[Series[(2 + 9 x - x^3)/((x^2 + 2 x - 1) (x^2 - 2 x - 1)), {x, 0, 29}], x] (* Michael De Vlieger, May 26 2016 *)
PROG
(PARI) Vec((2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)) + O(x^40)) \\ Colin Barker, May 26 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 10 2007
STATUS
approved