login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129345
a(2n) = A001542(n+1), a(2n+1) = A038761(n+1); a Pellian-related sequence.
2
2, 9, 12, 53, 70, 309, 408, 1801, 2378, 10497, 13860, 61181, 80782, 356589, 470832, 2078353, 2744210, 12113529, 15994428, 70602821, 93222358, 411503397, 543339720, 2398417561, 3166815962, 13979001969, 18457556052, 81475594253, 107578520350, 474874563549
OFFSET
0,1
COMMENTS
Summation of -a(n) and A129346 returns twice Pell numbers A000129 (apart from signs; starting from 2nd term of A000129).
FORMULA
G.f.: (2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
From Colin Barker, May 26 2016: (Start)
a(n) = ((-1-sqrt(2))^(1+n)-(-1+sqrt(2))^(1+n)+(1-sqrt(2))^n*(-4+3*sqrt(2))+(1+sqrt(2))^n*(4+3*sqrt(2)))/(2*sqrt(2)).
a(n) = 6*a(n-2)-a(n-4) for n>3.
(End)
MATHEMATICA
CoefficientList[Series[(2 + 9 x - x^3)/((x^2 + 2 x - 1) (x^2 - 2 x - 1)), {x, 0, 29}], x] (* Michael De Vlieger, May 26 2016 *)
PROG
(PARI) Vec((2+9*x-x^3)/((x^2+2*x-1)*(x^2-2*x-1)) + O(x^40)) \\ Colin Barker, May 26 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 10 2007
STATUS
approved