OFFSET
0,2
COMMENTS
Bisection of A048654. - Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 24 2004
This gives part of the (increasingly sorted) positive solutions y to the Pell equation x^2 - 2*y^2 = +7. For the x solutions see A038762. For the other part of solutions see A101386 and A253811. - Wolfdieter Lang, Feb 05 2015
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
M. J. DeLeon, Pell's Equation and Pell Number Triples, Fib. Quart., 14(1976), pp. 456-460.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(n) = (9*((3+2*sqrt(2))^n -(3-2*sqrt(2))^n)-((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = sqrt(2*(A038762(n))^2-14)/2.
For n>0, a(n)=A046090(n)+A001653(n)+A001652(n-1)=A055997(n+1)+A001652(n-1); e.g., 309=120+169+20. - Charlie Marion, Oct 11 2006
G.f.: (1+3*x)/(1-6*x+x^2). - Philippe Deléham, Nov 03 2008
a(n) = third binomial transform of 1,6,8,48,64,384. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
a(n) = irrational part of z(n) = (3 + sqrt(2))*(3 + 2*sqrt(2))^n, n >= 0. z(n) gives only part of the general positive solutions to the Pell equation x^2 - 2*y^2 = 7. See the Nagell reference in A038762 on how to find z(n), and a comment above. - Wolfdieter Lang, Feb 05 2015
a(n) = S(n, 6) + 3*S(n-1, 6), n >= 0, with the Chebyshev S-polynomials evaluated at x=6. See S(n-1, 6) = A001109(n). - Wolfdieter Lang, Mar 30 2015
E.g.f.: exp(3*x)*(2*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x))/2. - Stefano Spezia, Mar 16 2024
EXAMPLE
A038762(3)^2 - 2*a(4)^2 = 2547^2 - 2*1801^2 = +7. - Wolfdieter Lang, Feb 05 2015
MAPLE
a[0]:=1: a[1]:=9: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
LinearRecurrence[{6, -1}, {1, 9}, 40] (* Vincenzo Librandi, Nov 16 2011 *)
PROG
(Magma) I:=[1, 9]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
(PARI) a(n)=([0, 1; -1, 6]^n*[1; 9])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 02 2000
EXTENSIONS
Edited: Replaced the unspecific Pell comment. Moved a formula from the comment section to the formula section. - Wolfdieter Lang, Feb 05 2015
STATUS
approved