login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124124
Nonnegative integers n such that 2n^2 + 2n - 3 is square.
9
1, 2, 6, 13, 37, 78, 218, 457, 1273, 2666, 7422, 15541, 43261, 90582, 252146, 527953, 1469617, 3077138, 8565558, 17934877, 49923733, 104532126, 290976842, 609257881, 1695937321, 3551015162, 9884647086, 20696833093, 57611945197, 120629983398, 335787024098
OFFSET
1,2
COMMENTS
First differences are apparently in A143608. [R. J. Mathar, Jul 17 2009]
Alternative definition: T_n and (T_n - 1)/2 are triangular numbers. - Raphie Frank, Sep 06 2012
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
Hermann Stamm-Wilbrandt, 4 interlaced bisections
FORMULA
It appears that a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) if n is even, a(n) = 5*a(n-1)-5*a(n-2)+a(n-3) if n is odd. Can anyone confirm this?
Corrected and confirmed (using the g.f.) by Robert Israel, Aug 27 2014
2*a(n) = sqrt(7+2*A077442(n-1)^2)-1. - R. J. Mathar, Dec 03 2006
a(n) = a(n-1)+6*a(n-2)-6*a(n-3)-a(n-4)+a(n-5). G.f.: -x*(1+x-2*x^2+x^3+x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)). [R. J. Mathar, Jul 17 2009]
For n>0, a(2n-1) = 2*A001653(n) - A046090(n-1) and a(2n) = 2*A001653(n) + A001652(n-1). - Charlie Marion, Jan 03 2012
From Raphie Frank, Sep 06 2012: (Start)
If y = A006452(n), then a(n) = 2y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n))).
Also see A216134 [a(n) = y + ((sqrt(8y^2 - 7) - 1)/2 - (1 - sgn(n)))].
(End)
From Hermann Stamm-Wilbrandt, Aug 27 2014: (Start)
a(2*n+2) = A098586(2*n).
a(2*n+1) = A098790(2*n).
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>6. (End)
a(2*n+1)^2 + (a(2*n+1)+1)^2 = A038761(n)^2 + 2^2. - Hermann Stamm-Wilbrandt, Aug 31 2014
MAPLE
A124124 := proc(n)
coeftayl(x*(1+x-2*x^2+x^3+x^4)/((1-x)*(x^2-2*x-1)*(x^2+2*x-1)), x=0, n);
end proc:
seq(A124124(n), n=1..20); # Wesley Ivan Hurt, Aug 04 2014
# Alternative:
a[1]:= 1: a[2]:= 2: a[3]:= 6:
for n from 4 to 1000 do
a[n]:= (3 + 2*(n mod 2))*(a[n-1]-a[n-2])+a[n-3]
od:
seq(a[n], n=1..100); # Robert Israel, Aug 13 2014
MATHEMATICA
LinearRecurrence[{1, 6, -6, -1, 1}, {1, 2, 6, 13, 37}, 40] (* Harvey P. Dale, Nov 05 2011 *)
CoefficientList[Series[(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)*(x^2 - 2*x - 1)*(x^2 + 2*x - 1)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 04 2014 *)
PROG
(PARI)
for(n=1, 10^10, if(issquare(2*n^2+2*n-3), print1(n, ", "))) \\ Derek Orr, Aug 13 2014
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Nov 29 2006
EXTENSIONS
More terms from Harvey P. Dale, Feb 07 2011
More terms from Wesley Ivan Hurt, Aug 04 2014
STATUS
approved