

A001108


a(n)th triangular number is a square: a(n+1) = 6*a(n)  a(n1) + 2, with a(0) = 0, a(1) = 1.
(Formerly M4536 N1924)


61



0, 1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

b(0)=0, c(0)=1, b(i+1)=b(i)+c(i), c(i+1)=b(i+1)+b(i); then a(i) (the number in the sequence) is 2b(i)^2 if i is even, c(i)^2 if i is odd and b(n)=A000129(n) and c(n)=A001333(n).  Darin Stephenson (stephenson(AT)cs.hope.edu) and Alan Koch
For n>1 gives solutions to A007913(2x)=A007913(x+1).  Benoit Cloitre, Apr 07 2002
If (X,X+1,Z) is a Pythagorean triple, then ZX1 and Z+X are in the sequence.
For n >= 2, a(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is A001109. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005.  Asher Auel (auela(AT)math.upenn.edu), Jan 12 2006
This is the r=8 member of the rfamily of sequences S_r(n) defined in A092184 where more information can be found.
Also, 1^3 + 2^3 + 3^3 + ... + a(n)^3 = k(n)^4 where k(n) is A001109.  Anton Vrba (antonvrba(AT)yahoo.com), Nov 18 2006
The sequence lists the numbers k for which Sum_{j=0..k} j is a perfect square.  Paolo P. Lava, Nov 28 2007
If T_x=y^2 is a triangular number which is also a square, the least both triangular and square number which is greater as T_x is T_(3*x + 4*y + 1) = (2*x + 3*y + 1)^2 (W. Sierpiński 1961).  Richard Choulet, Apr 28 2009
The remainder of the division of a(n) by 5 is 0, 1, 3 or 4. The remainder of the division of a(n) by 7 is 0 or 1.  Mohamed Bouhamida, Aug 26 2009
Number of units of a(n) belongs to a periodic sequence: 0, 1, 8, 9, 8, 1. The remainder of the division of a(n) by 5 belongs to a periodic sequence: 0, 1, 3, 4, 3, 1.  Mohamed Bouhamida, Sep 01 2009
If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or (a+1) is a perfect square. If (a,b) is a solution of the Diophantine equation 0 + 1 + 2 + ... + x = y^2, then a or a/8 is a perfect square. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c, then a+b = cd and ((d+b)^2, d^2b^2) is a solution, too. If (a,b), (c,d) and (e,f) are three consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with a < c < e, then (8*d^2, d*(fb)) is a solution, too.  Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation 0 + 1 + 2 + ... + x = y^2 with p < r, then r = 3p + 4q + 1 and s = 2p + 3q + 1.  Mohamed Bouhamida, Sep 02 2009
Also numbers k such that (ceiling(sqrt(k*(k+1)/2)))^2  k*(k+1)/2 = 0.  Ctibor O. Zizka, Nov 10 2009
From Lekraj Beedassy, Mar 04 2011: (Start)
Let x=a(n) be the index of the associated triangular number T_x=1+2+3+...+x and y=A001109(n) be the base of the associated perfect square S_y=y^2. Now using the identity S_y = T_y + T_{y1}, the defining T_x = S_y may be rewritten as T_y = T_x  T_{y1}, or 1+2+3+...+y = y+(y+1)+...+x. This solves the Strand Magazine House Number problem mentioned in A001109 in references from PooSung Park and John C. Butcher. In a variant of the problem, solving the equation 1+3+5+...+(2*x+1) = (2*x+1)+(2*x+3)+...+(2*y1) implies S_(x+1) = S_y  S_x, i.e., with (x,x+1,y) forming a Pythagorean triple, the solutions are given by pairs of x=A001652(n), y=A001653(n). (End)
If P = 8*n + 1 is a prime, then P divides a((P1)/2); e.g., 7 divides a(3) and 41 divides a(20). Also, if P = 8*n + 3 is prime, then 4*P divides (a((P1)/2) + a((P+1)/2 +3).  Kenneth J Ramsey, Mar 05 2012
Starting at a(2), a(n) gives all the dimensions of Euclidean kspace in which the ratio of outer to inner Soddy hyperspheres' radii for k+1 identical kissing hyperspheres is rational. The formula for this ratio is (1+3k+2*sqrt(2k*(k+1)))/(k1) where k is the dimension. So for a(3) = 49, the ratio is 6 in the 49th dimension. See comment for A010502.  Frank M Jackson, Feb 09 2013
Conjecture: For n>1 a(n) is the index of the first occurrence of n in sequence A123737.  Vaclav Kotesovec, Jun 02 2015
For n=2*k, k>0, a(n) is divisible by 8 (deficient), so since all proper divisors of deficient numbers are deficient, then a(n) is deficient. For n=2*k+1, k>0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. sigma(a(5)) = 1723 < 3362 = 2*a(5). In either case, a(n) is deficient.  Muniru A Asiru, Apr 14 2016
The squares of NSW numbers (A008843) interleaved with twice squares from A084703, where A008843(n) = A002315(n)^2 and A084703(n) = A001542(n)^2. Conjecture: Also numbers n such that sigma(n) = A000203(n) and sigma(nth triangular number) = A074285(n) are both odd numbers.  Jaroslav Krizek, Aug 05 2016
For n > 0, numbers for which the number of odd divisors of both n and of n + 1 is odd.  Gionata Neri, Apr 30 2018
a(n) will be solutions to some (A000217(k) + A000217(k+1))/2.  Art Baker, Jul 16 2019
For n>=2, a(n) is the base for which A058331(A001109(n)) is a length3 repunit. Example: for n=2, A001109(2)=6 and A058331(6)=73 and 73 in base a(2)=8 is 111. See Grantham and Graves.  Michel Marcus, Sep 11 2020


REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10.
M. S. Klamkin, "International Mathematical Olympiads 19781985," (Supplementary problem N.T.6)
W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, pp. 2122 MR2002669
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1304 (terms 0..200 from T. D. Noe)
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
I. Adler, Three Diophantine equations  Part II, Fib. Quart., 7 (1969), pp. 181193.
M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 11231134.
Elwyn Berlekamp and Joe P. Buhler, Puzzle Column, Emissary, MSRI Newsletter, Fall 2005. Problem 1, (6 MB).
L. Euler, De solutione problematum diophanteorum per numeros integros, Par. 19
H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237238.
Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020.
D. B. Hayes, Calculemus!, American Scientist, 96 (SepOct 2008), 362366.
Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4
P. Lafer, Discovering the squaretriangular numbers, Fib. Quart., 9 (1971), 93105.
IoanaClaudia Lazăr, Lucas sequences in tuniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
MSRI newsletter, Emissary, Fall 2005.
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
K. Ramsey, Generalized Proof re Square Triangular Numbers
K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005  Oct 10, 2011.
D. L. Vestal, Review of "Pythagorean Triangles" (Chapter 4) by W. Sierpiński
Eric Weisstein's World of Mathematics, Square Triangular Number.
Eric Weisstein's World of Mathematics, Triangular Number.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
Index entries for sequences related to Chebyshev polynomials.
Index entries for linear recurrences with constant coefficients, signature (7,7,1).
Index entries for twoway infinite sequences


FORMULA

a(0) = 0, a(n+1) = 3*a(n) + 1 + 2*sqrt(2*a(n)*(a(n)+1)).  Jim Nastos, Jun 18 2002
a(n) = floor( (1/4) * (3+2*sqrt(2))^n ).  Benoit Cloitre, Sep 04 2002
a(n) = A001653(k)*A001653(k+n)  A001652(k)*A001652(k+n)  A046090(k)*A046090(k+n).  Charlie Marion, Jul 01 2003
a(n) = A001652(n1) + A001653(n1) = A001653(n)  A046090(n) = (A001541(n)1)/2 = a(n).  Michael Somos, Mar 03 2004
a(n) = 7*a(n1)  7*a(n2) + a(n3).  Antonio Alberto Olivares, Oct 23 2003
a(n) = Sum_{r=1..n} 2^(r1)*binomial(2n, 2r).  Lekraj Beedassy, Aug 21 2004
If n>1, then both A000203(n) and A000203(n+1) are odd numbers: n is either square or twice square.  Labos Elemer, Aug 23 2004
a(n) = (T(n, 3)1)/2 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n).  Wolfdieter Lang, Oct 18 2004
G.f.: x*(1+x)/((1x)*(16*x+x^2)). Binet form: a(n) = ((3+2*sqrt(2))^n + (32*sqrt(2))^n  2)/4.  Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
a(n) = floor(sqrt(2*A001110(n))) = floor(A001109(n)*sqrt(2)) = 2*(A000129(n)^2)  (n mod 2) = A001333(n)^2  1 + (n mod 2).  Henry Bottomley, Apr 19 2000, corrected by Eric Rowland, Jun 23 2017
A072221(n) = 3*a(n) + 1.  David Scheers, Dec 25 2006
A028982(a(n)) + 1 = A028982(a(n) + 1).  JuriStepan Gerasimov, Mar 28 2011
a(n+1)^2 + a(n)^2 + 1 = 6*a(n+1)*a(n) + 2*a(n+1) + 2*a(n).  Charlie Marion, Sep 28 2011
a(n) = 2*A001653(m)*A053141(nm1) + A002315(m)*A046090(nm1) + a(m) with m < n; otherwise, a(n) = 2*A001653(m)*A053141(mn)  A002315(m)*A001652(mn) + a(m). See Link to Generalized Proof re Square Triangular Numbers.  Kenneth J Ramsey, Oct 13 2011
a(n) = A048739(2n2), n > 0.  Richard R. Forberg, Aug 31 2013
From Peter Bala, Jan 28 2014: (Start)
A divisibility sequence: that is, a(n) divides a(n*m) for all n and m. Case P1 = 8, P2 = 12, Q = 1 of the 3parameter family of linear divisibility sequences found by Williams and Guy.
a(2*n+1) = A002315(n)^2 = Sum_{k = 0..4*n + 1} Pell(n), where Pell(n) = A000129(n).
a(2*n) = (1/2)*A005319(n)^2 = 8*A001109(n)^2.
(2,1) entry of the 2 X 2 matrix T(n,M), where M = [0, 3; 1, 4] and T(n,x) is the Chebyshev polynomial of the first kind. (End)


EXAMPLE

a(1) = ((3 + 2*sqrt(2)) + (3  2*sqrt(2))  2) / 4 = (3 + 3  2) / 4 = 4 / 4 = 1;
a(2) = ((3 + 2*sqrt(2))^2 + (3  2*sqrt(2))^2  2) / 4 = (9 + 4*sqrt(2) + 8 + 9  4*sqrt(2) + 8  2) / 4 = (18 + 16  2) / 4 = (34  2) / 4 = 32 / 4 = 8, etc.


MAPLE

A001108:=(1+z)/(z1)/(z**26*z+1); # Simon Plouffe in his 1992 dissertation, without the leading 0


MATHEMATICA

Table[(1/2)(1 + Sqrt[1 + Expand[8(((3 + 2Sqrt[2])^n  (3  2Sqrt[2])^n)/(4Sqrt[2]))^2]]), {n, 0, 100}] (* Artur Jasinski, Dec 10 2006 *)
Transpose[NestList[{#[[2]], #[[3]], 6#[[3]]#[[2]]+2}&, {0, 1, 8}, 20]][[1]] (* Harvey P. Dale, Sep 04 2011 *)
LinearRecurrence[{7, 7, 1}, {0, 1, 8}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *)


PROG

(PARI) a(n)=(real((3+quadgen(32))^n)1)/2
(PARI) a(n)=(subst(poltchebi(abs(n)), x, 3)1)/2
(PARI) a(n)=if(n<0, a(n), (polsym(16*x+x^2, n)[n+1]2)/4)
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+x)/((1x)*(16*x+x^2)))) \\ Altug Alkan, May 01 2018
(Haskell)
a001108 n = a001108_list !! n
a001108_list = 0 : 1 : map (+ 2)
(zipWith () (map (* 6) (tail a001108_list)) a001108_list)
 Reinhard Zumkeller, Jan 10 2012
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)/((1x)*(16*x+x^2)))); // G. C. Greubel, Jul 15 2018


CROSSREFS

Cf. A001109, A001110, A007913, A000203, A084301, A001652, A072221.
Partial sums of A002315. A000129, A005319.
a(n) = A115598(n), n > 0.  Hermann StammWilbrandt, Jul 27 2014
Sequence in context: A351128 A200660 A028443 * A115598 A261668 A097204
Adjacent sequences: A001105 A001106 A001107 * A001109 A001110 A001111


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Apr 19 2000
More terms from Lekraj Beedassy, Aug 21 2004


STATUS

approved



