OFFSET
1,1
COMMENTS
sqrt(48)/10 is the area enclosed by Koch's fractal snowflake based on unit-sided equilateral triangle (actually 8/5 times the latter's area). - Lekraj Beedassy, Jan 06 2005
7+sqrt(48) is the ratio of outer to inner Soddy circles' radii for three identical kissing circles (see Soddy circles link). - Lekraj Beedassy, Feb 14 2006
Continued fraction expansion is 6 followed by {1, 12} repeated. - Harry J. Smith, Jun 06 2009
Let a, b, c the sides of a triangle ABC of area S, then 4*sqrt(3) <= (a^2+b^2+c^2) / S; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 27 2022
REFERENCES
J. N. Kapur, Mathematics Enjoyment For The Millions, Problem 47 pp. 64-67, Arya Book Depot, New Delhi 2000.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.3, page 112.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
L. Riddle, Area of the Koch Snowflake
Bernard Schott, Soddy circles
FORMULA
Equals 4*A002194. - R. J. Mathar, Jul 31 2010
Equals 1/A020805. - Bernard Schott, Sep 28 2022
EXAMPLE
6.928203230275509174109785366023489467771221015241522512223227917807732...
MATHEMATICA
RealDigits[N[Sqrt[48], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(48); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010502.txt", n, " ", d)); \\ Harry J. Smith, Jun 06 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved