login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246724
Decimal expansion of r_2, the second smallest radius for which a compact packing of the plane exists, with disks of radius 1 and r_2.
12
1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5, 0, 4, 5, 0, 4
OFFSET
0,2
COMMENTS
Essentially the same digit sequence as A176053 and A020832. - R. J. Mathar, Sep 06 2014
This equals the ratio of the radius of the inner Soddy circle and the common radius of the three kissing circles. See A343235, also for links. - Wolfdieter Lang, Apr 19 2021
Previous comment is, together with A176053, the answer to the 1st problem proposed during the 4th Canadian Mathematical Olympiad in 1972. - Bernard Schott, Mar 16 2022
REFERENCES
Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 1, 1972, page 37, 1993.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 62.
The IMO Compendium, Problem 1, 4th Canadian Mathematical Olympiad, 1972.
Samuel G. Moreno and Esther M. García, New infinite products of cosines and Viète-like formulae, Mathematics Magazine, Vol. 86, No. 1 (2013), pp. 15-25.
Bernard Schott, Soddy circles.
FORMULA
Equals (2*sqrt(3) - 3)/3.
Equals A176053 - 2.
Equals -1 + sqrt(2) * sqrt(2-sqrt(2)) * sqrt(2-sqrt(2-sqrt(2))) * ... (Moreno and García, 2013). - Amiram Eldar, Jun 09 2022
EXAMPLE
0.154700538379251529018297561003914911295203502540253752...
MATHEMATICA
RealDigits[(2*Sqrt[3] - 3)/3, 10, 103] // First
CROSSREFS
Cf. A246723 (r_1), A246725 (r_3), A246726 (r_4), A246727 (r_5), A002193 (r_6 = sqrt(2)-1), A246728 (r_7), A246729 (r_8), A246730 (r_9).
Sequence in context: A019323 A244088 A020832 * A199276 A373009 A293380
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved