login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293380
Constant r satisfies: 0 = Sum_{n>=1} (1/2 - r^n)^n/n.
1
5, 4, 7, 1, 8, 0, 2, 4, 3, 9, 6, 6, 1, 6, 2, 4, 9, 2, 2, 0, 5, 7, 2, 9, 5, 0, 6, 3, 3, 3, 6, 7, 6, 1, 2, 5, 0, 7, 4, 0, 8, 2, 1, 7, 1, 2, 3, 0, 4, 0, 1, 4, 5, 4, 6, 8, 9, 7, 9, 8, 4, 8, 3, 4, 9, 6, 7, 4, 4, 3, 7, 3, 7, 6, 8, 2, 1, 1, 4, 2, 7, 2, 2, 7, 5, 2, 7, 4, 4, 6, 4, 7, 6, 4, 3, 6, 2, 9, 9, 8, 7, 5, 8, 3, 3, 2, 0, 2, 9, 0, 6, 5, 3, 4, 5, 1, 8, 4, 2, 7, 3, 9, 8, 1, 4, 9, 2, 0, 0, 3, 1, 5, 6, 1, 1, 4, 6, 7, 7, 4, 2, 2, 6, 4, 5, 3, 4, 9, 3, 3, 0, 7, 4, 1, 0, 9, 0, 0, 0, 5, 2, 3, 7, 6, 6, 5, 3, 4, 8, 7, 8, 8, 0, 6, 0, 1, 5, 5, 0, 4, 3, 5, 9, 5, 2, 2, 5, 6, 5, 2, 4, 4, 1, 2, 9, 5, 7, 6, 8, 1
OFFSET
1,1
COMMENTS
Motivated by the identity: Sum_{n=-oo..+oo, n<>0} (x - y^n)^n/n = -log(1-x), where 0 < |y| < 1.
LINKS
FORMULA
Constant r satisfies:
(1) 0 = Sum_{n>=1} (1/2 - r^n)^n/n.
(2) log(2) = Sum_{n>=1} -(-2)^n * r^(n^2) / (n * (2 - r^n)^n).
(3) log(2) = Sum_{n=-oo..+oo, n<>0} (1/2 - r^n)^n/n.
EXAMPLE
This constant r satisfies:
(1) 0 = (1/2 - r) + (1/2 - r^2)^2/2 + (1/2 - r^3)^3/3 + (1/2 - r^4)^4/4 + (1/2 - r^5)^5/5 + (1/2 - r^6)^6/6 + (1/2 - r^7)^7/7 +...+ (1/2 - r^n)^n/n +...
(2) log(2) = 2*r/(1*(2-r)) - 4*r^4/(2*(2-r^2)^2) + 8*r^9/(3*(2-r^3)^3) - 16*r^16/(4*(2-r^4)^4) + 32*r^25/(5*(2-r^5)^5) - 64*r^36/(6*(2-r^6)^6) + 128*r^49/(7*(2-r^7)^7) +...+ -(-2)^n*r^(n^2)/(n*(2 - r^n)^n) +...
Generate this constant by starting with r = 1/2, then iterating:
r = 1/2 + Sum_{n>=2} (1/2 - r^n)^n/n
until desired precision is obtained.
The decimal expansion of this constant begins:
r = 0.54718024396616249220572950633367612507408217123040\
14546897984834967443737682114272275274464764362998\
75833202906534518427398149200315611467742264534933\
07410900052376653487880601550435952256524412957681\
82693465860618497191799083347673481372585407644099\
24055191128326813665663792044619018918015138612919\
22517558095362487924139590714375812254869132031832\
18367379983243100982933520788500322157294335929007\
55655664462513200033351752386548227393277008165715\
29410668980294972340791666277226143340137889105699\
35060868564903372212515078409032998013830380846461\
16660724937698814144627042744975548967453269729505\
00837350332540478154056153357459272811285243101502\
99873154285994445948954150068646715198122601416180\
27269065095980272424381878673803675794878861979766\
52053648913218593538722216325284646073380549624908\
40947592959138732827303377668432579538738949156079\
09323721120215443092493318959352211206766875039409\
58294662290861736158641953284177195304501155824207\
36558392796387833385010708345397097472030780714382...
The binary representation of this constant begins:
binary(r) = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, ...].
The reciprocal of this constant is approximately
1/r = 1.82755136178096331900589049975995341534409500025148884404865962127...
PROG
(PARI) /* Print N digits of constant r (up to precision) */
N=100
{r=.5; for(i=1, 2*N, r = (r + 1/2 + suminf(n=2, (1/2 - r^n)^n/n ))/2); r}
{for(n=1, N, print1( floor(r*10^n)%10, ", "))} \\ print N digits
{suminf(n=1, -(-2)^n * r^(n^2)/(n * (2 - r^n)^n))} \\ ~ log(2)
CROSSREFS
Sequence in context: A246724 A199276 A373009 * A358663 A021870 A210974
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Oct 07 2017
STATUS
approved