login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293379
G.f.: exp( Sum_{n>=1} A052886(n) * x^n/n ).
3
1, 1, 2, 8, 60, 708, 11508, 238356, 5997924, 177615460, 6050014228, 233010132788, 10011985592516, 474815000195844, 24635182609510260, 1388071373846060244, 84406416179170495524, 5509502700599270439588, 384233531128293605883092, 28513258202704586092168820, 2243347226931600749380032388, 186528883284172684793892938308, 16343425532977997699916585695796
OFFSET
0,3
COMMENTS
The e.g.f. of A052886 equals Series_Reversion( log(1 + x - x^2) ), which also equals (1 - sqrt(5 - 4*exp(x)) )/2.
This sequence is motivated by the following conjectures:
(C1) Given integer series G(x) such that G(0) = G'(0) = 1, define L(n) by
Sum_{n>=1} L(n) * x^n/n! = Series_Reversion( log(G(x)) )
then exp( Sum_{n>=1} L(n) * x^n/n ) is also an integer series;
(C2) Given G(x) = 1 + x*G(x)^m, define L(n) by
Sum_{n>=1} L(n) * x^n/n! = Series_Reversion( log(G(x)) )
then exp( Sum_{n>=1} L(n) * x^n/n ) = (1 + m*x)/(1 + (m-1)*x).
LINKS
FORMULA
a(n) ~ sqrt(5) * n^(n-2) / (2^(3/2) * exp(n) * (log(5/4))^(n-1/2)). - Vaclav Kotesovec, Oct 26 2017
a(n) = (1/n)*Sum_{m=1..n} m! * C(m-1) * Sum_{s=m..n} Stirling2(s,m) * a(n-s) for n >= 1 with a(0) = 1, where C(n) = A000108(n). - Petros Hadjicostas, Jun 12 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 60*x^4 + 708*x^5 + 11508*x^6 + 238356*x^7 + 5997924*x^8 + 177615460*x^9 + 6050014228*x^10 +...
such that
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 207*x^4/4 + 3211*x^5/5 + 64383*x^6/6 + 1581259*x^7/7 + 45948927*x^8/8 + 1541641771*x^9/9 +...+ A052886(n)*x^n/n +...
Note that the e.g.f. of A052886 equals Series_Reversion( log(1 + x - x^2) ) = x + 3*x^2/2! + 19*x^3/3! + 207*x^4/4! + 3211*x^5/5! + 64383*x^6/6! + 1581259*x^7/7! + 45948927*x^8/8! +...
MATHEMATICA
nmax = 20; A052886 = CoefficientList[Series[(1 - Sqrt[5 - 4*E^x])/2, {x, 0, nmax}], x] * Range[0, nmax]!; Clear[a]; a[n_]:= a[n] = Sum[A052886[[n-k+1]]*a[k], {k, 0, n-1}] / n; a[0] = 1; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 26 2017 *)
PROG
(PARI) {a(n) = my(A, L); L = x*serlaplace( 1/x*serreverse( log(1+x-x^2 +O(x^(n+2))) ) ); A = exp(L); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) c(n) = (1/(n+1))*binomial(2*n, n); /* A000108 */
lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = (1/(n-1))*sum(m=1, n-1, m!*c(m-1)*sum(s=m, n-1, stirling(s, m, 2)*a[n-s]))); a; } \\ Petros Hadjicostas, Jun 12 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2017
STATUS
approved