login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113145
Row 4 of table A113143; equal to INVERT of quartic (or 4-fold) factorials shifted one place right.
1
1, 1, 2, 8, 60, 708, 11428, 232756, 5704964, 163192820, 5331728964, 195776203764, 7978838333188, 357313060904692, 17438518614448580, 921145685670017012, 52355425184381107332, 3185815887918686343924, 206633438251087758833476
OFFSET
0,3
FORMULA
a(n) = Sum_{j=0..k} 4^(k-j)*A111146(k, j).
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A007696(n-k).
G.f.: 1/(T(0) - x) where T(k) = 1 - x*(4*k+1)/(1 - x*(4*k+4)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
EXAMPLE
A(x) = 1 + x + 2*x^2 + 8*x^3 + 60*x^4 + 708*x^5 +...
= 1/(1 - x - x^2 - 5*x^3 - 45*x^4 -...- A007696(n)*x^(n+1)
-...).
PROG
(PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0, n, x^j*prod(i=0, j, 4*i+1))); return(polcoeff(A, n, X))}
CROSSREFS
Cf. A113143, A007696 (4-fold factorials).
Sequence in context: A355100 A303532 A355106 * A293379 A294331 A036794
KEYWORD
nonn
AUTHOR
STATUS
approved