OFFSET
0,3
FORMULA
a(n) = Sum_{j=0..k} 3^(k-j)*A111146(k, j).
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A007559(n-k).
G.f.: 1/(Q(0)-x) where Q(k) = 1 - x*(3*k+1)/( 1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 21 2013
EXAMPLE
A(x) = 1 + x + 2*x^2 + 7*x^3 + 41*x^4 + 364*x^5 + 4409*x^6
+...
= 1/(1 - x - x^2 - 4*x^3 - 28*x^4 -...- A007559(n)*x^(n+1)
-...).
PROG
(PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0, n, x^j*prod(i=0, j, 3*i+1))); return(polcoeff(A, n, X))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham and Paul D. Hanna, Oct 28 2005
STATUS
approved