login
A113144
Row 3 of table A113143; equal to INVERT of triple (or 3-fold) factorials shifted one place right.
1
1, 1, 2, 7, 41, 364, 4409, 67573, 1248626, 26948347, 664414997, 18409263772, 566018365445, 19117946453041, 703533848468330, 28013710891743007, 1199943043040160401, 55013996422974758476, 2687888298887895948065, 139414898768304344206141
OFFSET
0,3
FORMULA
a(n) = Sum_{j=0..k} 3^(k-j)*A111146(k, j).
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A007559(n-k).
G.f.: 1/(Q(0)-x) where Q(k) = 1 - x*(3*k+1)/( 1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 21 2013
EXAMPLE
A(x) = 1 + x + 2*x^2 + 7*x^3 + 41*x^4 + 364*x^5 + 4409*x^6
+...
= 1/(1 - x - x^2 - 4*x^3 - 28*x^4 -...- A007559(n)*x^(n+1)
-...).
PROG
(PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0, n, x^j*prod(i=0, j, 3*i+1))); return(polcoeff(A, n, X))}
CROSSREFS
Cf. A113143, A007559 (3-fold factorials).
Sequence in context: A006677 A346271 A101390 * A320415 A006846 A047864
KEYWORD
nonn
AUTHOR
STATUS
approved