|
|
A293378
|
|
Expansion of (eta(q^6)/(eta(q)eta(q^2)eta(q^3))^2 in powers of q.
|
|
2
|
|
|
1, 2, 7, 16, 39, 80, 171, 328, 638, 1168, 2133, 3744, 6540, 11092, 18687, 30816, 50421, 81136, 129582, 204160, 319340, 493952, 758781, 1154624, 1745748, 2617958, 3902614, 5776144, 8501784, 12434320, 18092565, 26175784, 37689734, 53989056, 76993497, 109284736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
G.f.: Product_{k>0} ((1 - x^(6*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(3*k))))^2.
a(n) ~ 5^(5/4) * exp(2*Pi*sqrt(5*n)/3) / (72 * sqrt(3) * n^(7/4)). - Vaclav Kotesovec, Oct 11 2017
|
|
MATHEMATICA
|
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 11 2017 *)
|
|
CROSSREFS
|
Cf. A077285, A293377.
Sequence in context: A224227 A260505 A042243 * A041887 A129441 A093971
Adjacent sequences: A293375 A293376 A293377 * A293379 A293380 A293381
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Oct 07 2017
|
|
STATUS
|
approved
|
|
|
|