login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293378
Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.
2
1, 2, 7, 16, 39, 80, 171, 328, 638, 1168, 2133, 3744, 6540, 11092, 18687, 30816, 50421, 81136, 129582, 204160, 319340, 493952, 758781, 1154624, 1745748, 2617958, 3902614, 5776144, 8501784, 12434320, 18092565, 26175784, 37689734, 53989056, 76993497, 109284736
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{k>0} ((1 - x^(6*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(3*k))))^2.
a(n) ~ 5^(5/4) * exp(2*Pi*sqrt(5*n)/3) / (72 * sqrt(3) * n^(7/4)). - Vaclav Kotesovec, Oct 11 2017
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 11 2017 *)
CROSSREFS
Sequence in context: A224227 A260505 A042243 * A377728 A041887 A129441
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 07 2017
STATUS
approved