login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293375
Triangle read by rows: T(n, k), for 1 <= k <= n, where T(n, k) is defined in A192763.
0
1, 2, -2, 1, 2, -3, 1, -2, 1, 0, 0, 2, 2, 1, -5, 1, -2, -3, -2, 0, 6, 0, 2, 1, 1, 2, 1, -7, 0, -2, 2, 0, 2, -2, 0, 0, 0, 2, -3, 1, 1, -3, 2, 0, 0, 1, -2, 1, -2, -5, -2, 1, -2, 0, 10, 0, 2, 2, 1, 0, 0, 1, 2, 2, 1, -11, 0, -2, -3, 0, 2, 6, 2, 0, -3, -2, 0, 0, -1
OFFSET
1,2
COMMENTS
The function T(n, k) = T(k, n) is defined for k > n also but only the values for 1 <= k <= n as a triangular array are listed here.
LINKS
EXAMPLE
Triangle begins:
1;
2, -2;
1, 2, -3;
1, -2, 1, 0;
0, 2, 2, 1, -5;
1, -2, -3, -2, 0, 6;
...
MATHEMATICA
T[ n_, k_] := Which[ n < 1 || k < 1, 0, k > n, T[ k, n], k == 1, If[ n < 3, n, (n T[ n - 1, 1] - Sum[ T[ n, i], {i, 2, n - 1}]) / (n + 1)], n > k , T[ k, Mod[ n, k, 1]], True, - Sum[ T[ n, i], {i, n - 1}]];
PROG
(PARI) {T(n, k) = if( n<1 || k<1, 0, k>n, T(k, n), k==1, if( n<3, n, (n * T(n-1, 1) - sum( i=2, n-1, T(n, i))) / (n+1)), n>k, T(k, (n-1)%k+1), -sum( i=1, n-1, T(n, i)))};
CROSSREFS
Cf. A192763.
Sequence in context: A236573 A333252 A366376 * A232174 A077766 A273110
KEYWORD
sign,tabl
AUTHOR
Michael Somos, Oct 07 2017
STATUS
approved