login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273110
Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (x+4*y+4*z)^2 + (9*x+3*y+3*z)^2 a square, where x,y,z,w are nonnegative integers with y > 0 and y >= z <= w.
15
1, 2, 2, 1, 2, 3, 1, 2, 3, 3, 3, 2, 2, 2, 2, 1, 5, 6, 2, 2, 2, 3, 1, 3, 3, 4, 6, 1, 4, 4, 1, 2, 6, 5, 3, 3, 2, 5, 1, 3, 6, 5, 4, 3, 4, 3, 1, 2, 4, 7, 7, 2, 4, 8, 1, 2, 6, 3, 4, 2, 4, 5, 4, 1, 7, 8, 4, 5, 4, 4, 1, 6, 5, 7, 5, 2, 4, 5, 1, 2
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 23, 31, 39, 47, 55, 71, 79, 119, 151, 191, 311, 671).
(ii) Any natural number can be written as x^2 + y^2 + z^2 + w^2 with (x+y+z)^2 + (4*(x+y-z))^2 a square, where x,y,z,w are nonnegative integers with x+y >= z.
(iii) For each tuple (a,b,c,d,e,f) = (1,1,1,3,6,-3), (1,1,1,4,12,-12), (1,1,2,1,1,-5), (1,1,2,1,8,-5), (1,1,2,3,3,-3), (1,1,2,4,4,-8), (1,3,11,12,4,4), (1,3,14,16,4,4), (1,3,14,18,4,2), (1,3,20,16,4,12), (1,4,11,6,3,3), (1,5,13,12,12,12), (1,5,14,15,12,21), (1,6,6,16,8,8), (1,6,14,12,8,8), (1,6,14,16,8,4), (1,6,17,20,8,4), (1,6,20,20,8,8), (1,7,8,4,2,6), (1,7,8,10,5,15), (1,7,9,10,5,12), (1,7,15,4,2,8), (1,7,15,10,5,20), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that (a*x+b*y+c*z)^2 + (d*x+e*y+f*z)^2 is a square.
It was proved in arXiv:1604.06723 that any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y > 0 such that x+4*y+4*z and 9*x+3*y+3*z are the two legs of a right triangle with positive integer sides.
See also A271714, A273107, A273108 and A273134 for similar conjectures related to Pythagorean triples. For more conjectural refinements of Lagrange's four-square theorem, one may consult arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 1 > 0 = 0 and (0+4*1+4*0)^2 + (9*0+3*1+3*0)^2 = 5^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 0 < 1 = 1 = 1 and (2+4*1+4*1)^2 + (9*2+3*1+3*1)^2 = 26^2.
a(23) = 1 since 23 = 3^2 + 2^2 + 1^2 + 3^2 with 2 > 1 < 3 and (3+4*2+4*1)^2 + (9*3+3*2+3*1)^2 = 39^2.
a(31) = 1 since 31 = 2^2 + 1^2 + 1^2 + 5^2 with 0 < 1 = 1 < 5 and (2+4*1+4*1)^2 + (9*2+3*1+3*1)^2 = 26^2.
a(39) = 1 since 39 = 3^2 + 2^2 + 1^2 + 5^2 with 2 > 1 < 5 and (3+4*2+4*1)^2 + (9*3+3*2+3*1)^2 = 39^2.
a(47) = 1 since 47 = 5^2 + 3^2 + 2^2 + 3^2 with 3 > 2 < 3 and (5+4*3+4*2)^2 + (9*5+3*3+3*2)^2 = 65^2.
a(55) = 1 since 55 = 2^2 + 1^2 + 1^2 + 7^2 with 0 < 1 = 1 < 7 and (2+4*1+4*1)^2 + (9*2+3*1+3*1)^2 = 26^2.
a(71) = 1 since 71 = 6^2 + 5^2 + 1^2 + 3^2 with 5 > 1 < 3 and (6+4*5+4*1)^2 + (9*6+3*5+3*1)^2 = 78^2.
a(79) = 1 since 79 = 6^2 + 3^2 + 3^2 + 5^2 with 0 < 3 = 3 < 5 and (6+4*3+4*3)^2 + (9*6+3*3+3*3)^2 = 78^2.
a(119) = 1 since 119 = 5^2 + 3^2 + 2^2 + 9^2 with 3 > 2 < 9 and (5+4*3+4*2)^2 + (9*5+3*3+3*2)^2 = 65^2.
a(151) = 1 since 151 = 9^2 + 6^2 + 3^2 + 5^2 with 6 > 3 < 5 and (9+4*6+4*3)^2 + (9*9+3*6+3*3)^2 = 117^2.
a(191) = 1 since 191 = 10^2 + 9^2 + 1^2 + 3^2 with 9 > 1 < 3 and (10+4*9+4*1)^2 + (9*10+3*9+3*1)^2 = 130^2.
a(311) = 1 since 311 = 7^2 + 6^2 + 1^2 + 15^2 with 6 > 1 < 15 and (7+4*6+4*1)^2 + (9*7+3*6+3*1)^2 = 91^2.
a(671) = 1 since 671 = 17^2 + 11^2 + 6^2 + 15^2 with 11 > 6 < 15 and (17+4*11+4*6)^2 + (9*17+3*11+3*6)^2 = 221^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(x+4y+4z)^2+(9x+3y+3z)^2], r=r+1], {x, 0, Sqrt[n]}, {z, 0, Sqrt[(n-x^2)/3]}, {y, Max[1, z], Sqrt[n-x^2-2z^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 15 2016
STATUS
approved