login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267121 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y*z*(x+9*y+11*z+10*w) a square, where x is a positive integer and y,z,w are nonnegative integers. 23
1, 3, 2, 1, 6, 7, 1, 3, 7, 7, 6, 2, 6, 12, 1, 1, 12, 10, 7, 6, 13, 7, 2, 7, 8, 19, 8, 1, 18, 12, 2, 3, 14, 15, 13, 7, 7, 18, 1, 7, 25, 14, 6, 6, 19, 13, 2, 2, 14, 22, 12, 6, 18, 27, 4, 12, 13, 9, 19, 1, 18, 25, 5, 1, 24, 26, 6, 12, 26, 14, 2, 10, 16, 31, 16, 7, 24, 13, 4, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 15, 39, 119, 127, 159, 239, 359, 391, 527, 543, 863, 5791).
(ii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with 2*x*y*(x+2y+z+2w) (or 2*x*y*(x+6y+z+2w), or x*y*(x+11y+z+2w)) a square, where x,y,z,w are nonnegative integers with z > 0 (or w > 0).
(iii) Any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that w*(a*w+b*x+c*y+d*z) is a square, provided that (a,b,c,d) is among the following quadruples (1,1,2,3), (1,1,4,5), (1,1,6,9), (1,2,6,34), (1,3,6,m) (m = 12, 21, 27, 36), (1,3,9,18), (1,3,9,36), (1,3,18,27), (1,3,24,117), (1,3,90,99), (1,6,6,18), (1,6,6,30), (1,8,16,24).
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
EXAMPLE
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0 and 2*0*0*(2+9*0+11*0+10*0) = 0^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0 and 2*1*1*(2+9*1+11*1+10*1) = 8^2.
a(15) = 1 since 15 = 2^2 + 1^2 + 3^2 + 1^2 with 2 > 0 and 2*1*3*(2+9*1+11*3+10*1) = 18^2.
a(39) = 1 since 39 = 1^2 + 1^2 + 1^2 + 6^2 with 1 > 0 and 1*1*1*(1+9*1+11*1+10*6) = 9^2.
a(119) = 1 since 119 = 1^2 + 1^2 + 9^2 + 6^2 with 1 > 0 and 1*1*9*(1+9*1+11*9+10*6) = 39^2.
a(127) = 1 since 127 = 5^2 + 1^2 + 1^2 + 10^2 with 5 > 0 and 5*1*1*(5+9*1+11*1+10*10) = 25^2.
a(159) = 1 since 159 = 3^2 + 1^2 + 7^2 + 10^2 with 3 > 0 and 3*1*7*(3+9*1+11*7+10*10) = 63^2.
a(239) = 1 since 239 = 3^2 + 3^2 + 10^2 + 11^2 with 3 > 0 and 3*3*10*(3+9*3+11*10+10*11) = 150^2.
a(359) = 1 since 359 = 9^2 + 11^2 + 11^2 + 6^2 with 9 > 0 and 9*11*11*(9+9*11+11*11+10*6) = 561^2.
a(391) = 1 since 391 = 19^2 + 5^2 + 1^2 + 2^2 with 19 > 0 and 19*5*1*(19+9*5+11*1+10*2) = 95^2.
a(527) = 1 since 527 = 21^2 + 6^2 + 7^2 + 1^2 with 21 > 0 and 21*6*7*(21+9*6+11*7+10*1) = 378^2.
a(543) = 1 since 543 = 15^2 + 13^2 + 10^2 + 7^2 with 15 > 0 and 15*13*10*(15+9*13+11*10+10*7) = 780^2.
a(863) = 1 since 863 = 9^2 + 9^2 + 5^2 + 26^2 with 9 > 0 and 9*9*5*(9+9*9+11*5+10*26) = 405^2.
a(5791) = 1 since 5791 = 57^2 + 38^2 + 33^2 + 3^2 with 57 > 0 and 57*38*33*(57+9*38+11*33+10*3) = 7524^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x*y*z(x+9y+11z+10*Sqrt[n-x^2-y^2-z^2])], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
Sequence in context: A192018 A079513 A060408 * A208518 A139624 A132276
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 01 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 08:39 EDT 2024. Contains 375173 sequences. (Running on oeis4.)