login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192018
Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binary Fibonacci tree of order n (1<=k<=2n-3; entries in row n are the coefficients of the corresponding Wiener polynomial).
1
1, 3, 2, 1, 6, 6, 5, 3, 1, 11, 13, 14, 12, 10, 5, 1, 19, 24, 30, 31, 31, 28, 19, 7, 1, 32, 42, 56, 66, 74, 78, 77, 61, 32, 9, 1, 53, 71, 98, 124, 152, 175, 196, 203, 180, 118, 49, 11, 1, 87, 118, 166, 218, 284, 349, 419, 485, 525, 502, 384, 207, 70, 13, 1, 142, 194, 276, 370, 499, 645, 812, 998, 1189, 1331, 1349, 1152, 749, 336, 95, 15, 1
OFFSET
2,2
COMMENTS
The binary Fibonacci trees f(k) of order k is a rooted binary tree defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references.
Row n contains 2n-3 entries.
T(n,1) = A001911(n-1) (Fibonacci numbers minus 2).
Sum_{k>=1} k*T(n,k) = A192019(n) (the Wiener indices).
REFERENCES
K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009.
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009.
FORMULA
The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program).
EXAMPLE
Triangle starts:
1;
3, 2, 1;
6, 6, 5, 3, 1;
11, 13, 14, 12, 10, 5, 1;
19, 24, 30, 31, 31, 28, 19, 7, 1;
MAPLE
G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 13)): for n to 10 do r[n] := sort(coeff(Gser, z, n)) end do; w[1] := 0: w[2] := t: for n from 3 to 10 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: for n from 2 to 10 do seq(coeff(w[n], t, k), k = 1 .. 2*n-3) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A365743 A208520 A114155 * A079513 A060408 A267121
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 21 2011
STATUS
approved