The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192018 Triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the binary Fibonacci tree of order n (1<=k<=2n-3; entries in row n are the coefficients of the corresponding Wiener polynomial). 1
 1, 3, 2, 1, 6, 6, 5, 3, 1, 11, 13, 14, 12, 10, 5, 1, 19, 24, 30, 31, 31, 28, 19, 7, 1, 32, 42, 56, 66, 74, 78, 77, 61, 32, 9, 1, 53, 71, 98, 124, 152, 175, 196, 203, 180, 118, 49, 11, 1, 87, 118, 166, 218, 284, 349, 419, 485, 525, 502, 384, 207, 70, 13, 1, 142, 194, 276, 370, 499, 645, 812, 998, 1189, 1331, 1349, 1152, 749, 336, 95, 15, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS The binary Fibonacci trees f(k) of order k is a rooted binary tree defined as follows: 1. f(0) has no nodes and f(1) consists of a single node. 2. For k>=2, f(k) is constructed from a root with f(k-1) as its left subtree and f(k-2) as its right subtree. See the Iyer & Reddy references. Row n contains 2n-3 entries. T(n,1) = A001911(n-1) (Fibonacci numbers minus 2). Sum_{k>=1} k*T(n,k) = A192019(n) (the Wiener indices). REFERENCES K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of Binomial trees and Fibonacci trees, Int'l. J. Math. Engin. with Comp., Accepted for publication, Sept. 2009. LINKS B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969. K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, Wiener index of binomial trees and Fibonacci trees, arXiv:0910.4432 [cs.DM], 2009. FORMULA The Wiener polynomial w(n,t) of the binary Fibonacci tree of order n satisfies the recurrence relation w(n,t) = w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2) + t^2*r(n-1,t)*r(n-2,t), w(1,t)=0, w(2,t)=t, where r(n,t) is the generating polynomial of the nodes of the binary Fibonacci tree f(n) with respect to the level of the nodes (for example, r(2,t) = 1 + t for the tree / ; see A004070 and the Maple program). EXAMPLE Triangle starts:    1;    3,  2,  1;    6,  6,  5,  3,  1;   11, 13, 14, 12, 10,  5,  1;   19, 24, 30, 31, 31, 28, 19,  7,  1; MAPLE G := z/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 13)): for n to 10 do r[n] := sort(coeff(Gser, z, n)) end do; w[1] := 0: w[2] := t: for n from 3 to 10 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: for n from 2 to 10 do seq(coeff(w[n], t, k), k = 1 .. 2*n-3) end do; # yields sequence in triangular form CROSSREFS Cf. A001911, A192019. Sequence in context: A177977 A208520 A114155 * A079513 A060408 A267121 Adjacent sequences:  A192015 A192016 A192017 * A192019 A192020 A192021 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Jun 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 00:22 EDT 2021. Contains 343609 sequences. (Running on oeis4.)