login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192015
Arithmetic derivative of prime powers: a(n) = A003415(A000961(n)).
7
0, 1, 1, 4, 1, 1, 12, 6, 1, 1, 32, 1, 1, 1, 10, 27, 1, 1, 80, 1, 1, 1, 1, 14, 1, 1, 1, 192, 1, 1, 1, 1, 108, 1, 1, 1, 1, 1, 1, 1, 1, 22, 75, 1, 448, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 405, 1, 1024, 1, 1, 1, 1, 1, 1, 1, 34
OFFSET
1,4
COMMENTS
a(A000040(n)) = 1; a(A002808(n)) > 1;
A001787, A027471, A100484, A079705 and A051674 are subsequences;
A001787 and A024622 give record values and where they occur;
A192016(n) = A003415(a(n)).
LINKS
Eric Weisstein's World of Mathematics, Prime Power
FORMULA
a(n) = A025474(n) * A025473(n)^(A025474(n) - 1).
MATHEMATICA
Join[{0}, Reap[For[n = 1, n <= 300, n++, f = FactorInteger[n]; If[Length[f] == 1, Sow[n*Total[Apply[#2/#1&, f, {1}]]]]]][[2, 1]]] (* Jean-François Alcover, Feb 21 2014 *)
PROG
(Haskell)
a192015 = a003415 . a000961 -- Reinhard Zumkeller, Apr 16 2014
(Python)
from sympy import primepi, integer_nthroot, factorint
def A192015(n):
if n == 1: return 0
def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return sum((m*e//p for p, e in factorint(m).items())) # Chai Wah Wu, Aug 15 2024
CROSSREFS
Sequence in context: A146967 A173152 A156049 * A205946 A101919 A055106
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 26 2011
STATUS
approved