login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025474 Exponent of the n-th prime power A000961(n). 29
0, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n) is the number of automorphisms on the field with order A000961(n).  This group of automorphisms is cyclic of order a(n). - Geoffrey Critzer, Feb 23 2018

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A100995(A000961(n)).

A000961(n) = A025473(n)^a(n); A056798(n) = A025473(n)^(2*a(n));

A192015(n) = a(n)*A025473(n)^(a(n)-1). - Reinhard Zumkeller, Jun 24 2011

a(n) = A001222(A000961(n)). - David Wasserman, Feb 16 2006

MATHEMATICA

Prepend[Table[ FactorInteger[q][[1, 2]], {q,

Select[Range[1, 1000], PrimeNu[#] == 1 &]}], 0] (* Geoffrey Critzer, Feb 23 2018 *)

PROG

(Haskell)

a025474 = a001222 . a000961 -- Reinhard Zumkeller, Aug 13 2013

(PARI) A025474_upto(N)=apply(bigomega, A000961_list(N)) \\ M. F. Hasler, Jun 16 2022

(Python) A025474_upto = lambda N: [A001222(n) for n in A000961_list(N)] # M. F. Hasler, Jun 16 2022

CROSSREFS

Cf. A000961 (the prime powers), A025473 (prime root of these), A100995 (exponent of prime powers or 0 otherwise), A001222 (bigomega), A056798 (prime powers with even exponents).

Cf. A117331.

Sequence in context: A348285 A164953 A136622 * A136575 A309898 A193592

Adjacent sequences:  A025471 A025472 A025473 * A025475 A025476 A025477

KEYWORD

easy,nonn

AUTHOR

David W. Wilson

EXTENSIONS

Edited by M. F. Hasler, Jun 16 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:58 EDT 2022. Contains 356943 sequences. (Running on oeis4.)