The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348285 a(1) = 2; for n > 1, let a(k) be a divisor > 1 of n appearing in all previous terms where k is as large as possible. Then a(n) = n - k. If no such k exists then a(n) = n - m, where a(m) = 1 and m is as large as possible. 1
 2, 1, 1, 3, 2, 1, 1, 3, 1, 5, 2, 1, 1, 3, 1, 5, 2, 1, 1, 3, 1, 5, 2, 1, 3, 3, 1, 5, 2, 1, 1, 3, 1, 5, 1, 4, 2, 1, 7, 3, 3, 1, 1, 7, 4, 9, 4, 1, 5, 1, 10, 5, 3, 1, 3, 9, 2, 1, 1, 3, 2, 1, 3, 3, 13, 2, 5, 2, 5, 1, 1, 4, 2, 1, 6, 3, 33, 2, 5, 1, 5, 4, 3, 1, 4, 8, 4, 1, 1, 7, 1, 5, 10, 16, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence shows long runs of 2 appearing as every second term separated with larger values, corresponding to the offset for the odd-numbered divisors. These are eventually broken when an even number is divisible by the previous odd-numbered offset term. See the linked image. The largest value in the first 10^6 terms is 291774, and in the same range the smallest number not yet seen is 2919. It is likely all numbers eventually appear although this is unknown. In the same range, the only composite number whose divisors > 1 have not appeared in the sequence is 121, i.e., 11 has not appeared before a(121), thus a(121) = 1 as a(120) = 1. LINKS Table of n, a(n) for n=1..96. Scott R. Shannon, Image of the first 10^6 terms. EXAMPLE a(2) = 1 as the last divisor > 1 of 2 so far appearing is a(1) = 2, and that is 2 - 1 = 1 term back from 2. a(3) = 1 as 3 is prime, thus the offset to the last 1 term, a(2), is 3 - 2 = 1. a(4) = 3 as the last divisor of 4 > 1 so far appearing is a(1) = 2, and that is 4 - 1 = 3 terms back from 4. a(6) = 1 as the last divisor of 6 > 1 so far appearing is a(5) = 2, and that is 6 - 5 = 1 term back from 6. CROSSREFS Cf. A027750, A348217, A341679, A181391. Sequence in context: A327520 A184441 A172279 * A164953 A136622 A025474 Adjacent sequences: A348282 A348283 A348284 * A348286 A348287 A348288 KEYWORD nonn AUTHOR Scott R. Shannon, Oct 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 23:15 EDT 2024. Contains 371798 sequences. (Running on oeis4.)